Toxicity analysis and biomarker response of Quinalphos Organophosphate Insecticide (QOI) on eco-friendly exotic Eudrilus eugeniae earthworm

Springer Science and Business Media LLC - Tập 195 - Trang 1-15 - 2023
Nachimuthu Krishnan Sujeeth1, Ramasamy Aravinth1, Murugesan Thandeeswaran2, Jayaraman Angayarkanni2, Aruliah Rajasekar3, R. Mythili4, Murugesan Gnanadesigan1
1Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
2Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
3Department of Biotechnology, Thiruvalluvar University, Vellore, India
4PG & Research, Department of Biotechnology, Mahendra Arts & Science College, Namakkal, India

Tóm tắt

An ever-increasing use of pesticides in agricultural fields has led to a catastrophic decline in crop quality and, ultimately soil fertility. To control various pests, quinalphos is commonly used in India’s tea plantations. This study aims to investigate the effects of the Quinalphos organophosphate insecticide on the non-target beneficial organism Eudrilus eugeniae earthworms and the biomarkers that respond to its effects. Earthworm species, especially E. eugeniae, remains as the most trustworthy and well-suited model organism for conducting a wide variety of environmental studies. The median lethal concentration (LC50) was identified as 3.561 µg cm−2 (contact filter paper) and 1.054 mg kg−2 (artificial soil toxicity). The 5% and 10% of LC50 value 3.561 µg cm−2 was exposed to earthworm to analyze the sublethal effects at pre-clitellum, clitellum, and post-clitellum segments. Specific enzymatic activities of neurotransmitter enzyme acetylcholinesterase; antioxidant enzymes such as lipid peroxidase, superoxide dismutase, and catalase; and detoxification enzymes including glutathione S transferase, reduced glutathione, carboxylesterase, and Cytochrome P450 were analyzed. Exposure of E. eugeniae earthworm to subacute exposures of pesticides caused significant alterations in these stress markers in a concentration-dependent manner. Morphological abnormalities like bulginess, coiling, and bleeding were observed after exposure of the insecticide treatments. Histological cellular disintegration, a reduced NRRT time, and an inhibited proteolytic zone were also identified in pesticide-exposed earthworms. Studies demonstrate that the organophosphate insecticide quinalphos causes acute toxicity in E. eugeniae; hence, it is suggested that non-target eco-friendly E. eugeniae earthworms may be at risk if exposed to the excessive concentrations of quinalphos organophosphate insecticide in soil.

Tài liệu tham khảo

Anand, M., & Suresh, K. (2014). Biochemical profiling and chemopreventive activity of phloretin on 7,12-Dimethylbenz (a) anthracene induced oral carcinogenesis in male golden Syrian hamsters. Toxicology International, 21(2), 179–185. https://doi.org/10.4103/0971-6580.139805 Araneda, A. D., Undurraga, P., Lopez, D., Saez, K., & Barra, R. (2016). Use of earthworms as a pesticide exposure indicator in soils under conventional and organic management. Chilean Journal of Agricultural Research, 76(3), 356–362. https://doi.org/10.4067/S0718-58392016000300014 Bhattacharyya, A., & Kanrar, B. (2013). Diversity of pesticides in tea. Tea in Health and Disease Prevention, 1491–1501. https://doi.org/10.1016/B978-0-12-384937-3.00124-5 Booth, L. H., & O’Halloran, K. (2001). A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environmental Toxicology and Chemistry, 20(11), 2494–2502. https://doi.org/10.1002/ETC.5620201115 Calisi, A., Zaccarelli, N., Lionetto, M. G., & Schettino, T. (2013). Integrated biomarker analysis in the earthworm Lumbricus terrestris: Application to the monitoring of soil heavy metal pollution. Chemosphere, 90(11), 2637–2644. https://doi.org/10.1016/J.CHEMOSPHERE.2012.11.040 Cao, Q., Steinman, A. D., Yao, L., & Xie, L. (2017). Toxicological and biochemical responses of the earthworm Eisenia fetida to cyanobacteria toxins. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-16267-8 Chakra Reddy, N., & Venkateswara Rao, J. (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety, 71(2), 574–582. https://doi.org/10.1016/j.ecoenv.2008.01.003 Chowdhury, D., Keogh, M. C., Ishii, H., Peterson, C. L., Buratowski, S., & Lieberman, J. (2005). γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Molecular Cell, 20(5), 801–809. https://doi.org/10.1016/j.molcel.2005.10.003 Cnubben, N. H. P., Rietjens, I. M. C. M., Wortelboer, H., van Zanden, J., & van Bladeren, P. J. (2001). The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology, 10(4), 141–152. https://doi.org/10.1016/S1382-6689(01)00077-1 Dazy, M., Masfaraud, J. F., & Férard, J. F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75(3), 297–302. https://doi.org/10.1016/J.CHEMOSPHERE.2008.12.045 Gobi, M., & Gunasekaran, P. (2010). Effect of butachlor herbicide on earthworm Eisenia fetida —its histological perspicuity. Applied and Environmental Soil Science, 2010, 1–4. https://doi.org/10.1155/2010/850758 Henson-Ramsey, H., Schneider, A., & Stoskopf, M. K. (2011). A comparison of multiple esterases as biomarkers of organophosphate exposure and effect in two earthworm species. Bulletin of Environmental Contamination and Toxicology, 86(4), 373–378. https://doi.org/10.1007/S00128-011-0236-9/TABLES/2 Ismail, S. A., Plxandiran, K., & Yegnanarayan, R. (1992). Anti-inflammatory activity of earthworm extracts. Soil Biology and Biochemistry, 24(12), 1253–1254. https://doi.org/10.1016/0038-0717(92)90102-4 Jayakumar, M., Emana, A. N., Subbaiya, R., Ponraj, M., Ashok Kumar, K. K., Muthusamy, G., Kim, W., & Karmegam, N. (2022). Detoxification of coir pith through refined vermicomposting engaging Eudrilus eugeniae. Chemosphere, 291, 132675. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132675 Jeyaprakasam, A., Muniyandi, B., James, A. J. P., Karmegam, N., & Ponnuchamy, K. (2021). Assessment of earthworm diversity and pesticide toxicity in Eudrilus Eugeniae. Environmental Chemistry and Ecotoxicology, 3, 23–30. https://doi.org/10.1016/j.enceco.2020.11.001 Karmegam, N., Jayakumar, M., Govarthanan, M., Kumar, P., Ravindran, B., & Biruntha, M. (2021). Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresource Technology, 319, 124136. https://doi.org/10.1016/J.BIORTECH.2020.124136 Kitamura, S., Sugihara, K., & Fujimoto, N. (2005). Endocrine disruption by organophosphate and carbamate pesticides. Toxicology of Organophosphate and Carbamate Compounds, 481–494. https://doi.org/10.1016/B978-012088523-7/50035-1 Kumar, S., Singh, S. M., Unit, E. T., & Ecology, E. (2017). Histopathological changes in two earthworm species after O , O-diethyl S- ( ethylthio ) methyl phasphoroditl toxicity. International Journal of Science, Environment, 6(5), 2898–2906. www.ijset.net Lammertyn, S., Masín, C. E., Zalazar, C. S., & Fernandez, M. E. (2021). Biomarkers response and population biological parameters in the earthworm Eisenia fetida after short term exposure to atrazine herbicide. Ecological Indicators, 121, 107173. https://doi.org/10.1016/J.ECOLIND.2020.107173 Leena, L., Amrita, K., & Preeti, C. (2012). Effect of dimethoate on testicular histomorphology of the earthworm Eudichogaster Kinneari (Stephenson). In International Research Journal of Biological Sciences (Vol. 1, Issue 4). www.isca.in Li, X. Y., Luo, Y. R., Yun, M. X., Wang, J., & Wang, J. J. (2010). Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm. Chemosphere, 78(7), 853–858. https://doi.org/10.1016/J.CHEMOSPHERE.2009.11.047 Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E., Erroi, E., & Schettino, T. (2016). Biomonitoring of water and soil quality: a case study of ecotoxicological methodology application to the assessment of reclaimed agroindustrial wastewaters. Springer, 27(1), 105–112. https://doi.org/10.1007/s12210-015-0486-2 Liu, S., Zhou, Q., & Wang, Y. (2011). Ecotoxicological responses of the earthworm Eisenia fetida exposed to soil contaminated with HHCB. Chemosphere, 83(8), 1080–1086. https://doi.org/10.1016/J.CHEMOSPHERE.2011.01.046 Liu, H. T., Guo, H. N., Guo, X. X., & Wu, S. (2021). Probing changes in humus chemical characteristics in response to biochar addition and varying bulking agents during composting: A holistic multi-evidence-based approach. Journal of Environmental Management, 300, 113736. https://doi.org/10.1016/J.JENVMAN.2021.113736 Lourenço, J. I., Pereira, R. O., Silva, A. C., Morgado, J. M., Carvalho, F. P., Oliveira, J. M., Malta, M. P., Paiva, A. A., Mendo, S. A., & Gonçalves, F. J. (2011). Genotoxic endpoints in the earthworms sub-lethal assay to evaluate natural soils contaminated by metals and radionuclides. Journal of Hazardous Materials, 186(1), 788–795. https://doi.org/10.1016/J.JHAZMAT.2010.11.073 Ma, T., Zhou, W., Chen, L., Wu, L., Christie, P., Zhang, H., & Luo, Y. (2017). Toxicity effects of di-(2-ethylhexyl) phthalate to Eisenia fetida at enzyme, cellular and genetic levels. PLoS ONE, 12(3), e0173957. https://doi.org/10.1371/journal.pone.0173957 Mekahlia, M. N., Tine, S., Menasria, T., Amieur, H., & Salhi, H. (2016a). In vitro biomarker responses of earthworm Lumbricus terrestris exposed to herbicide sekator and phosphate fertilizer. Water, Air, and Soil Pollution, 227(1), 1–8. https://doi.org/10.1007/s11270-015-2712-z Mekahlia, M. N., Tine, S., Menasria, T., Amieur, H., & Salhi, H. (2016b). In vitro biomarker responses of earthworm Lumbricus terrestris exposed to herbicide sekator and phosphate fertilizer. Water, Air, and Soil Pollution, 227(1). https://doi.org/10.1007/S11270-015-2712-Z Mosleh, Y. Y., Paris-Palacios, S., Couderchet, M., & Vernet, G. (2003). Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soil. Applied Soil Ecology, 23(1), 69–77. https://doi.org/10.1016/S0929-1393(02)00161-0 Narahashi, T. (1996). Neuronal ion channels as the target site of insecticides. In Pharmacology and Toxicology (Vol. 79, Issue 1, pp. 1–14). Blackwell Publishing Ltd. https://doi.org/10.1111/j.1600-0773.1996.tb00234.x OECD - Organization for Economic Co-operation and Development. (1984). Earthworm, acute toxicity tests. Test Guideline 207. OECD Guidelines for the Testing of Chemicals, 207(April), 9. https://doi.org/10.1787/9789264070042-en Omura, T., & Sato, R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence. The Journal of Biological Chemistry, 239, 2370–2378. Paul, S., Balakrishnan, S., Arumugaperumal, A., Lathakumari, S., Syamala, S. S., Vijayan, V., Durairaj, S. C. J., Arumugaswami, V., & Sivasubramaniam, S. (2022). Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Functional & Integrative Genomics, 22(4), 1–32. https://doi.org/10.1007/S10142-022-00849-5 R.H.D. (1952). Probit Analysis. By D. J. Finney, M.A., Sc.D., [2nd ed. Pp. xiv + 318. Cambridge University Press, 1952. 35 s .]. Journal of the Institute of Actuaries, 78(3), 388–390. https://doi.org/10.1017/s0020268100052938 Rico, A., Sabater, C., & Castillo, M. Á. (2016). Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 127, 222–229. https://doi.org/10.1016/j.ecoenv.2016.02.004 Roberts, B. L., & Wyman Dorough, H. (1984). Relative toxicities of chemicals to the earthworm Eisenia foetida. Environmental Toxicology and Chemistry, 3(1), 67–78. https://doi.org/10.1002/etc.5620030109 Saint-Denis, M., Narbonne, J. F., Arnaud, C., & Ribera, D. (2001). Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil: Effects of lead acetate. Soil Biology and Biochemistry, 33(3), 395–404. https://doi.org/10.1016/S0038-0717(00)00177-2 Samal, S., Sahoo, S., & Mishra, C. S. K. (2017). Morpho-histological and enzymatic alterations in earthworms Drawida willsi and Lampito mauritii exposed to urea, phosphogypsum and paper mill sludge. Chemistry and Ecology, 33(8), 762–776. https://doi.org/10.1080/02757540.2017.1357700 Sanchez-Hernandez, J. C., Mazzia, C., Capowiez, Y., & Rault, M. (2009). Carboxylesterase activity in earthworm gut contents: Potential (eco)toxicological implications. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 150(4), 503–511. https://doi.org/10.1016/J.CBPC.2009.07.009 Sanchez-Hernandez, J. C., Martínez Morcillo, S., Notario del Pino, J., & Ruiz, P. (2014). Earthworm activity increases pesticide-sensitive esterases in soil. Soil Biology and Biochemistry, 75, 186–196. https://doi.org/10.1016/J.SOILBIO.2014.04.015 Sanchez-Hernandez, J. C., Notario del Pino, J., & Domínguez, J. (2015). Earthworm-induced carboxylesterase activity in soil: Assessing the potential for detoxification and monitoring organophosphorus pesticides. Ecotoxicology and Environmental Safety, 122, 303–312. https://doi.org/10.1016/j.ecoenv.2015.08.012 Saxena, P. N., Gupta, S. K., & Murthy, R. C. (2014). Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida -a possible mechanism. Ecotoxicology and Environmental Safety, 100(1), 218–225. https://doi.org/10.1016/j.ecoenv.2013.11.006 Selvan Christyraj, J. D., Azhagesan, A., Ganesan, M., Subbiah Nadar Chelladurai, K., Paulraj, V. D., & Selvan Christyraj, J. R. S. (2019). Understanding the role of the clitellum in the regeneration events of the earthworm Eudrilus eugeniae. Cells, Tissues, Organs, 208(3–4), 134–141. https://doi.org/10.1159/000507243 Srivastava, P., Singh, A., & AK Pandey. (2016). Pesticides toxicity in fishes: biochemical, physiological and genotoxic aspects. Biochemical and Cellular Archives, 16(2), 199–218. https://www.researchgate.net/profile/Ak-Pandey/publication/308119322_Pallavi-BCA-2016/data/57daa4b208ae5292a3767d6d/Pallavi-BCA-2016.pdf Subbiahanadar Chelladurai, K., Selvan Christyraj, J. D., Azhagesan, A., Paulraj, V. D., Jothimani, M., Yesudhason, B. V., Chellathurai Vasantha, N., Ganesan, M., Rajagopalan, K., Venkatachalam, S., Benedict, J., John Samuel, J. K., & Selvan Christyraj, J. R. S. (2020). Exploring the effect of UV-C radiation on earthworm and understanding its genomic integrity in the context of H2AX expression. Scientific Reports 2021 10:1, 10(1), 1–14. https://doi.org/10.1038/s41598-020-77719-2 Sun, Y., Yin, G., Zhang, J., Yu, H., & Wang, X. (2007). Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No. 1 exposure. Environmental Toxicology, 22(3), 256–263. https://doi.org/10.1002/TOX.20262 Suresh, K., Manoharan, S., Vijayaanand, M. A., & Sugunadevi, G. (2010). Chemopreventive and antioxidant efficacy of (6)-paradol in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pharmacological Reports : PR, 62(6), 1178–1185. https://doi.org/10.1016/S1734-1140(10)70380-7 Thompson, H. M. (1999). Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology, 8(5), 369–384. https://doi.org/10.1023/A:1008934505370 Tiwari, R. K., Singh, S., Pandey, R. S., & Sharma, B. (2016). Enzymes of earthworm as indicators of pesticide pollution in soil. Advances in Enzyme Research, 04(04), 113–124. https://doi.org/10.4236/aer.2016.44011 Tiwari, R. K., Singh, S., & Pandey, R. S. (2019). Assessment of acute toxicity and biochemical responses to chlorpyrifos, cypermethrin and their combination exposed earthworm, Eudrilus eugeniae. Toxicology Reports, 6, 288–297. https://doi.org/10.1016/j.toxrep.2019.03.007 Velki, M., & Hackenberger, B. K. (2013). Biomarker responses in earthworm Eisenia andrei exposed to pirimiphos-methyl and deltamethrin using different toxicity tests. Chemosphere, 90(3), 1216–1226. https://doi.org/10.1016/J.CHEMOSPHERE.2012.09.051 Verma, M. K., & Pulicherla, K. K. (2016). Enzyme promiscuity in earthworm serine protease: substrate versatility and therapeutic potential. In Amino Acids (Vol. 48, Issue 4, pp. 941–948). Springer-Verlag Wien. https://doi.org/10.1007/s00726-015-2162-3 Wang, J. H., Zhu, L. S., Liu, W., Wang, J., & Xie, H. (2012). Biochemical responses of earthworm (Eisenia foetida) to the pesticides chlorpyrifos and fenvalerate. Toxicology Mechanisms and Methods, 22(3), 236–241. https://doi.org/10.3109/15376516.2011.640718 Weeks, J. M., & Svendsen, C. (1996). Neutral red retention by lysosomes from earthworm ( Lumbricus rubellus ) coelomocytes: A simple biomarker of exposure to soil copper. Environmental Toxicology and Chemistry, 15(10), 1801–1805. https://doi.org/10.1002/etc.5620151022 Xue, Y., Gu, X., Wang, X., Sun, C., Xu, X., Sun, J., & Zhang, B. (2009). The hydroxyl radical generation and oxidative stress for the earthworm Eisenia fetida exposed to tetrabromobisphenol A. Ecotoxicology, 18(6), 693–699. https://doi.org/10.1007/S10646-009-0333-2/TABLES/1 Yang, X., Gong, J., Kai, J., Song, Y., Lin, J., & Liu, J. (2019). Method for determining CYP2C9 activity in earthworms and its responses to benzo[a]pyrene or pyrene in soil. Clean - Soil, Air, Water, 47(7), 1800460. https://doi.org/10.1002/clen.201800460 Yu, Y., Li, X., Yang, G., Wang, Y., Wang, X., Cai, L., & Liu, X. (2019). Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosphere, 227, 489–495. https://doi.org/10.1016/j.chemosphere.2019.04.064 Yuvaraj, A., Govarthanan, M., Karmegam, N., Biruntha, M., Kumar, D. S., Arthanari, M., Govindarajan, R. K., Tripathi, S., Ghosh, S., Kumar, P., Kannan, S., & Thangaraj, R. (2021a). Metallothionein dependent-detoxification of heavy metals in the agricultural field soil of industrial area: Earthworm as field experimental model system. Chemosphere, 267, 129240. https://doi.org/10.1016/J.CHEMOSPHERE.2020.129240 Yuvaraj, A., Thangaraj, R., Karmegam, N., Ravindran, B., Chang, S. W., Awasthi, M. K., & Kannan, S. (2021b). Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. Chemosphere, 278, 130458. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130458 Zhang, Q., Zhu, L., Wang, J., Xie, H., Wang, J., Han, Y., & Yang, J. (2013). Oxidative stress and lipid peroxidation in the earthworm Eisenia fetida induced by low doses of fomesafen. Environmental Science and Pollution Research, 20(1), 201–208. https://doi.org/10.1007/S11356-012-0962-5 Zhang, Q., Zhang, B., & Wang, C. (2014). Ecotoxicological effects on the earthworm Eisenia fetida following exposure to soil contaminated with imidacloprid. Environmental Science and Pollution Research, 21(21), 12345–12353. https://doi.org/10.1007/s11356-014-3178-z Zhang, S., Ding, J., Razanajatovo, R. M., Jiang, H., Zou, H., & Zhu, W. (2019). Interactive effects of polystyrene microplastics and roxithromycin on bioaccumulation and biochemical status in the freshwater fish red tilapia (Oreochromis niloticus). Science of the Total Environment, 648, 1431–1439. https://doi.org/10.1016/J.SCITOTENV.2018.08.266