Toxic potential of Poly-hexamethylene biguanide hydrochloride (PHMB): A DFT, AIM and NCI analysis study with solvent effects

Computational and Theoretical Chemistry - Tập 1212 - Trang 113709 - 2022
Sibel Çelik1, Emine Tanış2
1Vocational School of Health Services, Kırsehir Ahi Evran University, 40100 Kırşehir, Turkey
2Department of Electrical Electronics Engineering, Kırsehir Ahi Evran University, 40100 Kırsehir, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Roth, 2010, Polihexanide for wound treatment—how it began, Skin Pharmacol. Physiol., 23, 4, 10.1159/000318236

De Paula, 2011, Physical and chemical characterization of poly(hexamethylene biguanide) hydrochloride, Polymers, 3, 928, 10.3390/polym3020928

Creppy, 2014, Study of epigenetic properties of poly(hexamethylene biguanide) hydrochloride (PHMB), Int. J. Environ. Res. Public Health, 11, 8069, 10.3390/ijerph110808069

Mashat, 2016, Polyhexamethylene biguanide hydrochloride: features and applications, British J. Environ. Sci., 4, 49

Bernauer, 2015, Opinion of the scientific committee on consumer safety (SCCS) – 2nd Revision of the safety of the use of poly(hexamethylene) biguanide hydrochloride or polyaminopropyl biguanide (PHMB) in cosmetic products, Regul. Toxicol. Pharm., 73, 885, 10.1016/j.yrtph.2015.09.035

Wei, 2009, Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride), Mater. Sci. Eng., C, 29, 1776, 10.1016/j.msec.2009.02.005

Lorenzo-Morales, 2015, An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment, Parasite, 10.1051/parasite/2015010

Krebs, 2005, Polybiguanides, particularly polyethylene hexamethylene biguanide, have activity against human immunodeficiency virus type 1, Biomed. Pharmacother., 59, 438, 10.1016/j.biopha.2005.07.007

Kaehn, 2010, Polihexanide: a safe and highly effective biocide, Skin Pharmacol. Physiol., 23, 7, 10.1159/000318237

Ikeda, 1983, Interaction of biologically active molecules with phospholipid membranes, I. Fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain, BBA, 735, 380, 10.1016/0005-2736(83)90152-9

Ikeda, 1984, Interaction of a polymeric bigunaide biocide with phospholipid membranes, BBA, 769, 57, 10.1016/0005-2736(84)90009-9

Moore, 2007, Using PHMB antimicrobial to prevent wound infection, Wounds UK, 3, 96

Berg, 2008, Intolerability to Lavasept peritoneal lavage in experimentally induced peritonitis in the guinea pig, Hygiene Medizin, 33, 189

Eberlein, 2012, Comparison of PHMB-containing dressing and silver dressings in patients with critically colonized or locally infected wounds, J Wound Care, 21, 14, 10.12968/jowc.2012.21.1.12

Ali, 2017, Effect of pol-hexamethylene biguanide hydrochloride (PHMB) treated non-sterile medical gloves upon the transmission of Streptococcus pyogenes, carbapenem-resistant E.coli, MRSA and Klebsiella pneumonia from contact surfaces, BMC Infec Dis., 10.1186/s12879-017-2661-9

European Chemicals Agency (ECHA), Committee for Risk Assessment RAC. Opinion proposing harmonized classification and labeling at EU level Polyhexamethylene biguanide or Ply(hexamethylene) biguanide hydrochloride or PHMB. CLH-O-0000003799-56-03/F. Adopted 14.03.2014. http://echa.europa.eu.

Lee, 2007, Cysticidal effect on Acanthamoeba and toxicity on human keratocytes by polyhexamethylene biguanide and chlorhexinide, Cornea, 26, 736, 10.1097/ICO.0b013e31805b7e8e

Chowdhury, 2018, Effect of polyhexamethylene biguanide on rat liver, Toxicol. Lett., 285, 94, 10.1016/j.toxlet.2017.12.032

Christen, 2017, Cytotoxicity and molecular effects of biocidal disinfectants (quanternary ammonia, glutaraldehyde, poly(hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos, Sci. Total Environ., 586, 1204, 10.1016/j.scitotenv.2017.02.114

Vedani, 2015, OpenVirtualToxLab – A platform for generating and exchanging in silico toxicity data, Toxicol. Lett., 232, 519, 10.1016/j.toxlet.2014.09.004

Pooventhiran, 2022, Hydrogen bonds between valsartan and solvents (water and methanol): Evidences for solvation dynamics using local energy decomposition and abinitio molecular dynamics analysis, J. Mol. Liq., 354, 10.1016/j.molliq.2022.118856

Pooventhiran, 2022, Study of the structural features and solvent effects using ab initio molecular dynamics and energy decomposition analysis of atogepant in water and ammonia, J. Mol. Liq., 352, 10.1016/j.molliq.2022.118672

Frisch, 2004

Frisch, 2001

Miertus, 1981, Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effect, Chem. Phys., 55, 117, 10.1016/0301-0104(81)85090-2

Dennington, 2009

Glendening, 1998

Lu, 2012, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885

Lu, 2012, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, J. Mol. Graph. Model., 38, 314, 10.1016/j.jmgm.2012.07.004

Humphrey, 1996, VMD: visual molecular dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5

Vedani, 2012, VirtualToxLab – a platform for estimating the toxic potential of drugs, chemicals and natural products, Toxicol. Appl. Pharmacol., 261, 142, 10.1016/j.taap.2012.03.018

Rodrigues, 2021, Prediction of electronic and vibrational properties of poly (hexamethylene biguanide) hydrochloride: A combined theoretical and experimental investigation, J. Mol. Struct., 1246, 10.1016/j.molstruc.2021.131176

Subashchandrabose, 2015, Syed Ali Padusha, Vibrational studies on (E)-1-((pyridine-2-yl)methylene)semicarbazide using experimental and theoretical method, J. Mol. Struct., 1094, 254, 10.1016/j.molstruc.2015.03.062

Larkin, 2017

Celik, 2017, Vibrational spectroscopic and structural investigations of bioactive molecule Glycyl-Tyrosine (Gly-Tyr), Vib. Spectrosc., 92, 287, 10.1016/j.vibspec.2017.08.007

Ozel, 2009, Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies, J. Mol. Struct., 924–926, 523, 10.1016/j.molstruc.2008.12.065

Celik, 2022, Vibrational spectroscopic characterization and structural investigations of Cepharanthine, a natural alkaloid, J. Mol. Struct., 1258, 10.1016/j.molstruc.2022.132693

Subashchandrabose, 2010, Vibrational spectroscopic study and NBO analysis on bis(4-amino-5-mercapto-1,2,4-triazol-3-yl) methane using DFT method, Spectrochim. Acta, Part A, 77, 877, 10.1016/j.saa.2010.08.023

Dilamian, 2013, Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride, Carbohydr. Polym., 94, 364, 10.1016/j.carbpol.2013.01.059

Zhao, 2011, Hydrogen bonding in the electronic excited state, Acc. Chem. Res., 45, 404, 10.1021/ar200135h

Fleming, 1976

Koopmans, 1934, Physica, 1, 104, 10.1016/S0031-8914(34)90011-2

Chattaraj, 2003, HSAB principle applied to the time evolution of chemical reactions, J. Am. Chem. Soc., 125, 2705, 10.1021/ja0276063

Arjunan, 2014, Spectrochim. Acta A, 130, 164, 10.1016/j.saa.2014.03.121

Miar, 2020, J. Chem. Res., 45, 147

Özkan Kotiloğlu, 2018, ChemistrySelect, 3, 5934, 10.1002/slct.201800412

Popelier, 2000, 143

Rozas, 2000, Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors, J. Am. Chem. Soc., 122, 11154, 10.1021/ja0017864

Tahenti, 2020, J. Mol. Struct., 1207, 10.1016/j.molstruc.2020.127781

Zheng, 2017, Dyes Pigm., 141, 179, 10.1016/j.dyepig.2017.02.021

Contreras-García, 2012, Ionic interactions: comparative topological approach, Comput. Theor. Chem., 998, 193, 10.1016/j.comptc.2012.07.043

Reed, 1988, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88, 899, 10.1021/cr00088a005

Noureddine, 2020, Experimental and DFT studies on the molecular structure, spectroscopic properties, and molecular docking of 4-phenylpiperazine-1-ium dihydrogen phosphate, J. Mol. Struct., 1207, 10.1016/j.molstruc.2020.127762