Towards unraveling the sintering process of two polystyrene particles by numerical simulations

Springer Science and Business Media LLC - Tập 31 - Trang 285-295 - 2019
Caroline Balemans1,2, Prakhyat Hejmady1,2, Ruth Cardinaels1, Patrick D. Anderson1
1Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
2Brightlands Materials Center, Geleen, The Netherlands

Tóm tắt

In this work, we study different rheological and thermal phenomena present during laser sintering of two polystyrene (PS) particles using fully resolved numerical simulations. In our analysis, we varied the laser power, the initial temperature and the thermal convection coefficient, used different rheological descriptions for the flow behavior and in addition studied the effect of the substrate (used in the experiments) on the temperature distribution of the system. Although we are not able to fully describe the results of the experiments with our simulations for the given parameter set, we obtained important insights in the significance of thermal initial and boundary conditions by systematically studying the sintering process.

Tài liệu tham khảo

Aid, S., A. Eddhahak, Z. Ortega, D. Froelich, and A. Tcharkhtchi., 2017. Predictive coalescence modeling of particles from different polymers: Application to PVDF and PMMA pair, J. Mater. Sci.52, 11725–11736. Balemans, C, M.A. Hulsen, and P.D. Anderson. 2017. Sintering of two viscoelastic particles: A computational approach, Appl. Sci. 7, 516. Balemans, C, M.A. Hulsen, and P.D. Anderson. 2019. On the validity of 2D analysis of non-isothermal sintering in SLS, Chem. Eng. Sci., accepted (DOI: 10.1016/j.ces.2019.115365). Balemans, C, N.O. Jaensson, M. A. Hulsen, and P.D. Anderson. 2018. Temperature-dependent sintering of two viscous particles, Addit. Manuf.24, 528–542. Bellehumeur, C.T., M. Kontopoulou, and J. Vlachopoulos. 1998. The role of viscoelasticity in polymer sintering, Rheol. Acta37, 270–278. Bellehumeur, C.T., M. K. Bisaria, and J. Vlachopoulos. 1996. An experimental study and model assessment of polymer sintering, Polym. Eng. Sci.36, 2198–2207. Berretta, S., Y. Wang, R. Davies, and O.R. Ghita. 2016. Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering, J. Mater. Sci.51, 4778–4794. Eshelby, J.D., 1949. Discussion of “Seminar on the kinetics of sintering”, Metall. Trans.185, 796–813. Frenkel, J., 1945. Viscous flow of crystalline bodies under the action of surface tension, J. Phys.9, 385–391. Groβer, J., R. Furstenberg, C.A. Kendziora, M.R. Papantonakis, J. Borchert, and R.A. McGill. 2012. Modeling of the heat transfer in laser-heated small particles on surfaces, Int. J. Heat Mass Transf.55, 8038–8050. Hejmady, P., L.C.A. van Breemen, P.D. Anderson, and R. Car-dinaels, 2019a, Laser sintering of polymer particle pairs studied by in situ visualization, Soft Matter15, 1373–1387. Hejmady, P., L. Cleven, L.C.A. van Breemen, P.D. Anderson, and R. Cardinaels, 2019b, A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particles, Rev. Sci. Instrum.90, 083905. Hooper, R., C.W. Macosko, and J.J. Derby. 2000. Assessing a flow-based finite element model for the sintering of viscoelas-tic particles, Chem. Eng. Sci.55, 5733–5746. Hopper, R.W., 1990. Plane Stokes flow driven by capillarity on a free surface, J. Fluid Mech.231, 349–375. Hornsby, P.R. and A.S. Maxwell. 1992. Mechanism of sintering between polypropylene beads, J. Mater. Sci.27, 2525–2533. Hulsen, M.A., 2019. TFEM, a Toolkit for the Finite Element Method: User s Guide, Eindhoven University of Technology, Eindhoven. Jagota, A. and P.R. Dawson. 1988. Micromechanical modeling of powder compacts -1. Unit problems for sintering and traction induced deformation, Acta Metall.36, 2551–2561. Jagota, A. and P.R. Dawson. 1990. Simulation of the viscous sintering of two particles, J. Am. Ceram. Soc.73, 173–177. Kuczynski, G.C., B. Neuville, and H.P Toner. 1970. Study of sintering of poly (methyl methacrylate), J. Appl. Polym. Sci.14, 2069–2077. Kuiken, H.K., 1990. Viscous sintering: The surface-tension-driven flow of a liquid form under the influence of curvature gradients at its surface, J. Fluid Mech.214, 503–515. Martinez-Herrera, J.I. and J.J. Derby. 1994. Analysis of capillary-driven viscous flows during the sintering of ceramic powders, AIChE J.40, 1794–1803. Martinez-Herrera, J.I. and J.J. Derby. 1995. Viscous sintering of spherical particles via finite element analysis, J. Am. Ceram. Soc.78, 645–649. Pokluda, O., C.T. Bellehumeur, and J. Vlachopoulos. 1997. Modification of FrenkePs model for sintering, AIChE J.43, 3253–3256. Ross, J.W., W.A. Miller, and G.C. Weatherly. 1981. Dynamic computer simulation of viscous flow sintering kinetics, J. Appl. Phys.52, 3884–3888. Scribben, E., D. Baird, and P. Wapperom. 2006. The role of transient rheology in polymeric sintering, Rheol. Acta45, 825–839. van de Vorst, G.A.L., 1993. Integral method for a two-dimensional Stokes flow with shrinking holes applied to viscous sintering, J. Fluid Mech.257, 667–689. van de Vorst, G.A.L., 1994. Numerical simulation of axisymmet-ric viscous sintering, Eng. Anal. Bound. Elem.14, 193–207. van de Vorst, GA.L. and R.M.M. Mattheij. 1992. Numerical analysis of a 2-D viscous sintering problem with non-smooth boundaries, Computing49, 239–263. van de Vorst, G.A.L., R.M.M. Mattheij, and H.K. Kuiken. 1992. A boundary element solution for two-dimensional viscous sintering, J. Comput. Phys.100, 50–63. Zhou, H. and J.J. Derby. 1998. Three-dimensional finite element analysis of viscous sintering, J. Am. Ceram. Soc.81, 533–540.