Towards the enzymatic formation of artificial metal base pairs with a carboxy-imidazole-modified nucleotide
Tài liệu tham khảo
Chin, 2017, Expanding and reprogramming the genetic code, Nature, 550, 53, 10.1038/nature24031
Zhang, 2018, Semisynthetic organisms with expanded genetic codes, Biochemistry, 57, 2177, 10.1021/acs.biochem.8b00013
Malyshev, 2015, The expanded genetic alphabet, Angew. Chem. Int. Ed., 54, 11930, 10.1002/anie.201502890
Feldmann, 2018, Expansion of the genetic alphabet: a chemist's approach to synthetic biology, accounts, Acc. Chem. Res., 51, 394, 10.1021/acs.accounts.7b00403
Kim, 2018, Shaping rolling circle amplification products into DNA nanoparticles by incorporation of modified nucleotides and their application to in vitro and in vivo delivery of a photosensitizer, Molecules, 23, 1833, 10.3390/molecules23071833
Benner, 2016, Alternative Watson-Crick synthetic genetic systems, Cold Spring Harb. Perspect. Biol., 8, 26, 10.1101/cshperspect.a023770
Malyshev, 2014, A semi-synthetic organism with an expanded genetic alphabet, Nature, 509, 385, 10.1038/nature13314
Zhang, 2017, A semisynthetic organism engineered for the stable expansion of the genetic alphabet, Proc. Natl. Acad. Sci. U. S. A., 114, 1317, 10.1073/pnas.1616443114
Zhang, 2017, A semi-synthetic organism that stores and retrieves increased genetic information, Nature, 551, 644, 10.1038/nature24659
Zhang, 2015, Evolution of functional six-nucleotide DNA, J. Am. Chem. Soc., 137, 6734, 10.1021/jacs.5b02251
Kimoto, 2013, Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nat. Biotechnol., 31, 453, 10.1038/nbt.2556
Sefah, 2014, In vitro selection with artificial expanded genetic information systems, Proc. Natl. Acad. Sci. U. S. A., 111, 1449, 10.1073/pnas.1311778111
Matsunaga, 2017, High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases, J. Am. Chem. Soc., 139, 324, 10.1021/jacs.6b10767
Biondi, 2016, Laboratory evolution of artificially expanded DNA gives redesignable aptamers that target the toxic form of anthrax protective antigen, Nucleic Acids Res., 44, 9565
Dunn, 2017, Analysis of aptamer discovery and technology, Nat. Rev. Chem., 1, 16, 10.1038/s41570-017-0076
Röthlisberger, 2017, Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery, Int. J. Mol. Sci., 18, 39, 10.3390/ijms18112430
Röthlisberger, 2018, Aptamer chemistry, Adv. Drug Deliv. Rev., 134, 3, 10.1016/j.addr.2018.04.007
Ledbetter, 2018, Reprograming the replisome of a semisynthetic organism for the expansion of the genetic alphabet, J. Am. Chem. Soc., 140, 758, 10.1021/jacs.7b11488
Betz, 2017, Structural basis for expansion of the genetic alphabet with an artificial nucleobase pair, Angew. Chem. Int. Ed., 56, 12000, 10.1002/anie.201704190
Feldman, 2017, Chemical stabilization of unnatural nucleotide triphosphates for the in vivo expansion of the genetic alphabet, J. Am. Chem. Soc., 139, 2464, 10.1021/jacs.6b12731
Wang, 2017, QM and QM/MM studies on excited-state relaxation mechanisms of unnatural bases in vacuo and base pairs in DNA, J. Phys. Chem. B, 121, 10467, 10.1021/acs.jpcb.7b09046
Pollum, 2016, Unintended consequences of expanding the genetic alphabet, J. Am. Chem. Soc., 138, 11457, 10.1021/jacs.6b06822
Jash, 2017, Metal-mediated base pairs: from characterization to application, Chem. Eur. J., 23, 17166, 10.1002/chem.201703518
Takezawa, 2017, Artificial DNA base pairing mediated by diverse metal ions, Chem. Lett., 46, 622, 10.1246/cl.160985
Johannsen, 2010, Solution structure of a DNA double helix with consecutive metal-mediated base pairs, Nat. Chem., 2, 229, 10.1038/nchem.512
Switzer, 2005, A purine-like nickel(II) base pair for DNA, Angew. Chem. Int. Ed., 44, 1529, 10.1002/anie.200462047
Sinha, 2015, A highly stabilizing Silver(I)-mediated base pair in parallel-stranded DNA, Angew. Chem. Int. Ed., 54, 3603, 10.1002/anie.201411931
Jana, 2015, Robust silver-mediated imidazolo-dC base pairs in metal DNA: dinuclear silver bridges with exceptional stability in double helices with parallel and antiparallel strand orientation, Chem. Commun., 51, 17301, 10.1039/C5CC06734K
Guo, 2017, Gemcitabine, pyrrologemcitabine, and 2′‑fluoro‑2′‑deoxycytidines: synthesis, physical properties, and impact of sugar fluorination on silver ion mediated base pairing, Chem. Eur. J., 23, 17740, 10.1002/chem.201703427
Mei, 2013, Ag+-mediated DNA base pairing: extraordinarily stable pyrrolo-dC-pyrrolo-dC pairs binding two silver ions, J. Organomet. Chem., 78, 9457, 10.1021/jo401109w
Jash, 2017, A metal-mediated base pair that discriminates between the canonical pyrimidine nucleobases, Chem. Sci., 8, 1337, 10.1039/C6SC03482A
Weizman, 2001, 2,2′‑Bipyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes, J. Am. Chem. Soc., 123, 3375, 10.1021/ja005785n
Meggers, 2000, A novel copper-mediated DNA base pair, J. Am. Chem. Soc., 122, 10714, 10.1021/ja0025806
Clever, 2007, DNA-metal base pairs, Angew. Chem. Int. Ed., 46, 6226, 10.1002/anie.200701185
Kaul, 2011, Reversible bond formation enables the replication and amplification of a crosslinking salen complex as an orthogonal base pair, Nat. Chem., 3, 794, 10.1038/nchem.1117
Kim, 2013, Polymerase recognition of a Watson-Crick-like metal-mediated base pair: purine‑2,6‑dicarboxylate center dot copper(II) center dot pyridine, ChemBioChem, 14, 2403, 10.1002/cbic.201300634
Kobayashi, 2016, Enzymatic synthesis of ligand-bearing DNAs for metal-mediated base pairing utilising a template-independent polymerase, Chem. Commun., 52, 3762, 10.1039/C5CC10039A
Takezawa, 2016, The effects of magnesium ions on the enzymatic synthesis of ligand-bearing artificial DNA by template-independent polymerase, Int. J. Mol. Sci., 17, 10, 10.3390/ijms17060906
Perrin, 2001, Bridging the gap between proteins and nucleic acids: a metal-independent RNaseA mimic with two protein-like functionalities, J. Am. Chem. Soc., 123, 1556, 10.1021/ja003290s
Hollenstein, 2009, A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M-2), Nucleic Acids Res., 37, 1638, 10.1093/nar/gkn1070
Röthlisberger, 2017, Facile immobilization of DNA using an enzymatic his-tag mimic, Chem. Commun., 53, 13031, 10.1039/C7CC07207D
Röthlisberger, 2017, On the enzymatic incorporation of an imidazole nucleotide into DNA, Org. Biomol. Chem., 15, 4449, 10.1039/C7OB00858A
Kumbhar, 2013, A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs, J. Inorg. Biochem., 127, 203, 10.1016/j.jinorgbio.2013.03.009
Schweizer, 2016, Thermodynamics of the formation of Ag(I)-mediated azole base pairs in DNA duplexes, J. Inorg. Biochem., 160, 256, 10.1016/j.jinorgbio.2016.03.003
Pochet, 1998, Imidazole‑4‑carboxamide and 1,2,4‑triazole‑3‑carboxamide deoxynucleotides as simplified DNA building blocks with ambiguous pairing capacity, Nucleosides Nucleotides, 17, 2003, 10.1080/07328319808004740
Ludwig, 1989, Rapid and efficient synthesis of nucleoside 5′‑O‑(1‑thiotriphosphates), 5′‑triphosphates and 2′,3′‑cyclophosphorothioates using 2‑chloro‑4H‑1,3,2‑benzodioxaphosphorin‑4‑one, J. Organomet. Chem., 54, 631, 10.1021/jo00264a024
Hocek, 2014, Synthesis of base-modified 2′‑deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology, J. Organomet. Chem., 79, 9914, 10.1021/jo5020799
Aschenbrenner, 2017, DNA polymerases and biotechnological applications, Curr. Opin. Biotechnol., 48, 187, 10.1016/j.copbio.2017.04.005
Holland, 2008, Electronic structure and reactivity of three-coordinate iron complexes, Acc. Chem. Res., 41, 905, 10.1021/ar700267b
Richters, 2014, A metal-mediated base pair with a 2 + 1 coordination environment, Eur. J. Inorg. Chem., 2014, 437, 10.1002/ejic.201301491
Motea, 2010, Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase, Biochim. Biophys. Acta, Proteins Proteomics, 1804, 1151, 10.1016/j.bbapap.2009.06.030
Takahara, 2017, Primary amine-clustered DNA aptamer for DNA-protein conjugation catalyzed by microbial transglutaminase, Bioconjug. Chem., 28, 2954, 10.1021/acs.bioconjchem.7b00594
Hollenstein, 2013, Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues - synthesis and biochemical characterization, Org. Biomol. Chem., 11, 5162, 10.1039/c3ob40842f
Gu, 2018, Enzymatic synthesis of nucleobase-modified single-stranded DNA offers tunable resistance to nuclease degradation, Biomacromolecules, 19, 3525, 10.1021/acs.biomac.8b00816
Horakova, 2011, Tail-labelling of DNA probes using modified deoxynucleotide triphosphates and terminal deoxynucleotidyl transferase. Application in electrochemical DNA hybridization and protein-DNA binding assays, Org. Biomol. Chem., 9, 1366, 10.1039/c0ob00856g
Hollenstein, 2012, Polymerase incorporation of pyrene-nucleoside triphosphates, Bioorg. Med. Chem. Lett., 22, 4428, 10.1016/j.bmcl.2012.04.101
Cho, 2006, Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone, ChemBioChem, 7, 669, 10.1002/cbic.200500515
Palluk, 2018, De novo DNA synthesis using polymerase-nucleotide conjugates, Nat. Biotechnol., 36, 645, 10.1038/nbt.4173
Vashishtha, 2016, Different divalent cations alter the kinetics and fidelity of DNA polymerases, J. Biol. Chem., 291, 20869, 10.1074/jbc.R116.742494
Stengel, 2011, Effect of transition metal ions on the fluorescence and Taq-catalyzed polymerase chain reaction of tricyclic cytidine analogs, Anal. Biochem., 416, 53, 10.1016/j.ab.2011.04.033
Pinheiro, 2012, Synthetic genetic polymers capable of heredity and evolution, Science, 336, 341, 10.1126/science.1217622