Hướng tới việc sản xuất các sản phẩm có giá trị gia tăng cao từ quá trình pyrolysis và gasification hơi của năm vật liệu cách nhiệt xây dựng dựa trên sinh khối ở cuối vòng đời

Waste and Biomass Valorization - Tập 14 - Trang 2061-2083 - 2022
Christelle Rabbat1, Sary Awad1, Audrey Villot1, Yves Andres1
1IMT Atlantique, GEPEA, UMR CNRS 6144, Nantes, France

Tóm tắt

Pyrolysis và gasification là hai quá trình chuyển đổi nhiệt hóa hứa hẹn để biến đổi nguyên liệu sinh khối thành nhiên liệu có giá trị. Pyrolysis dẫn đến sự hình thành biochar, tar (hoặc dầu sinh học), và khí vĩnh viễn trong khi gasification chủ yếu sản xuất một khí đồng hình. Nghiên cứu này khám phá quá trình pyrolysis chậm (550 °C) và gasification hơi (850 °C), trong một lò phản ứng bán quay, của năm vật liệu cách nhiệt dựa trên sinh khối, cụ thể là: bông cellulose (CW) và các tấm làm từ vải, gai, gỗ, và sợi hỗn hợp, sau khi chúng được đặc trưng. Sau đó, các tính chất của các sản phẩm khí, rắn và lỏng được điều tra và ứng dụng tiềm năng của chúng được đề xuất. Các dầu sinh học từ pyrolysis thu được từ gai, sợi hỗn hợp và gỗ có hàm lượng năng lượng thấp (18.6–20.94 MJ/kg), hàm lượng oxy cao (43.45–47.99 wt.%) và độ nhớt cao (149–494 mPa.s), cần nâng cấp thêm để sử dụng làm nhiên liệu vận chuyển. Biochar thể hiện hàm lượng carbon cao (65–85 wt.%), giá trị nhiệt cao (20–32 MJ/kg) và diện tích bề mặt riêng thấp (0–18 m2/g), làm cho chúng phù hợp để sử dụng làm nhiên liệu rắn. Điểm ngoại lệ duy nhất là biochar vải, nó có diện tích bề mặt cao nhất là 375 m2/g và cấu trúc vi xốp (66%), do đó việc sử dụng nó như một chất hấp phụ được khuyến nghị. Quá trình gasification hơi tạo ra khí đồng hình giàu hydro (khoảng 50 mol.% H2) với giá trị nhiệt trung bình (13–18 MJ/Nm3). Khí đồng hình từ CW có tỷ lệ H2/CO là 2.8, điều này thúc đẩy việc tái chế nó thông qua quá trình Fischer–Tropsch (nhiên liệu diesel). Boron được tập trung trong tro gasification CW. Do đó, pyrolysis được ưu tiên cho các tấm vải để tạo thành biochar vi xốp và các tấm gai/gỗ/hỗn hợp để sản xuất dầu sinh học; trong khi gasification được ưu tiên cho CW để sản xuất khí đồng hình và thu hồi boron.

Từ khóa


Tài liệu tham khảo

European Commission: Energy performance of buildings directive. https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en, (2019) Lecompte, T.: Matériaux bio-sourcés pour le bâtiment et stockage temporaire de carbone. 37 (2019) Liu, L., Li, H., Lazzaretto, A., Manente, G., Tong, C., Liu, Q., Li, N.: The development history and prospects of biomass-based insulation materials for buildings. Renew. Sustain. Energy Rev. 69, 912–932 (2017). https://doi.org/10.1016/j.rser.2016.11.140 Cetiner, I., Shea, A.D.: Wood waste as an alternative thermal insulation for buildings. Energy Build. 168, 374–384 (2018). https://doi.org/10.1016/j.enbuild.2018.03.019 Nyers, J., Kajtar, L., Tomić, S., Nyers, A.: Investment-savings method for energy-economic optimization of external wall thermal insulation thickness. Energy Build. 86, 268–274 (2015). https://doi.org/10.1016/j.enbuild.2014.10.023 Lechtenböhmer, S., Schüring, A.: The potential for large-scale savings from insulating residential buildings in the EU. Energy Effic. 4, 257–270 (2011). https://doi.org/10.1007/s12053-010-9090-6 Jelle, B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015 Abu-Jdayil, B., Mourad, A.-H., Hittini, W., Hassan, M., Hameedi, S.: Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr. Build. Mater. 214, 709–735 (2019). https://doi.org/10.1016/j.conbuildmat.2019.04.102 Breton, C., Blanchet, P., Amor, B., Beauregard, R., Chang, W.-S.: Assessing the climate change impacts of biogenic carbon in buildings: a critical review of two main dynamic approaches. Sustainability. 10, 2020 (2018). https://doi.org/10.3390/su10062020 Gustavsson, L., Haus, S., Lundblad, M., Lundström, A., Ortiz, C.A., Sathre, R., Truong, N.L., Wikberg, P.-E.: Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 67, 612–624 (2017). https://doi.org/10.1016/j.rser.2016.09.056 Pavel, C.C., Blagoeva, D.T.: Competitive landscape of the EU’s insulation materials industry for energy-efficient buildings, revised, p. 24. Publications Office of the European Union, Luxembourg (2018) Asdrubali, F., D’Alessandro, F., Schiavoni, S.: A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1–17 (2015). https://doi.org/10.1016/j.susmat.2015.05.002 Schiavoni, S., D’Alessandro, F., Bianchi, F., Asdrubali, F.: Insulation materials for the building sector: a review and comparative analysis. Renew. Sustain. Energy Rev. 62, 988–1011 (2016). https://doi.org/10.1016/j.rser.2016.05.045 Dutreix, N., Baecher, C., Pianu, B., Marx, I., Habasque, M., Bou Cherifi, F., Trannoy, L.: Etude sur le secteur et les filières de production des matériaux et produits biosourcés utilisés dans la construction (à l’exception du bois). Nomadéis, Paris (2017) Colombel, R.: Forte croissance du marché des isolants biosourcés. https://www.batiweb.com/actualites/vie-des-societes/www.batiweb.com Joreau, O.: Les isolants biosourcés doubleront leurs capacités de production d’ici 2025 (2021). https://www.batiradio.com/podcasts/megatrends/metiers/les-isolants-biosources-doubleront-leurs-capacites-de-production-dici-2025/ Floissac, L.: MATÉRIAUX BIOSOURCÉS : RESSOURCES ET USAGES D’ICI 2050 Modélisations: principes et résultats. Terracrea. 32 (2010) Rabbat, C., Awad, S., Villot, A., Rollet, D., Andrès, Y.: Sustainability of biomass-based insulation materials in buildings: current status in France, end-of-life projections and energy recovery potentials. Renew. Sustain. Energy Rev. 156, 111962 (2022). https://doi.org/10.1016/j.rser.2021.111962 Amziane, S.: Overview on bio-based building material made with plant aggregate. RILEM Tech. Lett. 9 (2016) Salami, A., Heikkinen, J., Tomppo, L., Hyttinen, M., Kekäläinen, T., Jänis, J., Vepsäläinen, J., Lappalainen, R.: A comparative study of pyrolysis liquids by slow pyrolysis of industrial hemp leaves hurds and roots. Mol. Basel Switz. 26, 3167 (2021). https://doi.org/10.3390/molecules26113167 Ronsse, F., van Hecke, S., Dickinson, D., Prins, W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 5, 104–115 (2013). https://doi.org/10.1111/gcbb.12018 Manyà, J.J., Azuara, M., Manso, J.A.: Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions. Biomass Bioenergy. 117, 115–123 (2018). https://doi.org/10.1016/j.biombioe.2018.07.019 Bhardwaj, G., Kumar, M., Mishra, P.K., Upadhyay, S.N.: Kinetic analysis of the slow pyrolysis of paper wastes. Biomass Convers. Biorefinery. (2021). https://doi.org/10.1007/s13399-021-01363-7 Chowdhury, R., Sarkar, A.: Reaction kinetics and product distribution of slow pyrolysis of Indian textile wastes. Int. J. Chem. React. Eng. (2012). https://doi.org/10.1515/1542-6580.2662 Ahmed, I., Gupta, A.K.: Syngas yield during pyrolysis and steam gasification of paper. Appl. Energy. 86, 1813–1821 (2009). https://doi.org/10.1016/j.apenergy.2009.01.025 Dong, J., Nzihou, A., Chi, Y., Weiss-Hortala, E., Ni, M., Lyczko, N., Tang, Y., Ducousso, M.: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO. Waste Biomass Valorization. 8, 2735–2746 (2017). https://doi.org/10.1007/s12649-016-9784-x González-Vázquez, M.P., García, R., Gil, M.V., Pevida, C., Rubiera, F.: Unconventional biomass fuels for steam gasification: kinetic analysis and effect of ash composition on reactivity. Energy 155, 426–437 (2018). https://doi.org/10.1016/j.energy.2018.04.188 Pfeifer, C., Koppatz, S., Hofbauer, H.: Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers. Biorefinery. 1, 39–53 (2011). https://doi.org/10.1007/s13399-011-0007-1 Yasin, S., Curti, M., Rovero, G., Hussain, M., Sun, D.: Spouted-bed gasification of flame retardant textiles as a potential non-conventional biomass: a preparatory study. Appl. Sci. 10, 946 (2020). https://doi.org/10.3390/app10030946 Wen, C., Wu, Y., Chen, X., Jiang, G., Liu, D.: The pyrolysis and gasification performances of waste textile under carbon dioxide atmosphere. J. Therm. Anal. Calorim. 128, 581–591 (2017). https://doi.org/10.1007/s10973-016-5887-7 Di Blasi, C., Branca, C., Galgano, A.: Flame retarding of wood by impregnation with boric acid—pyrolysis products and char oxidation rates. Polym. Degrad. Stab. 92, 752–764 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.02.007 Cheng, X., Wang, B.: Yield, composition, and property of biochar obtained from the two-step pyrolysis of rice husk impregnated with boric acid. Energies 10, 1814 (2017). https://doi.org/10.3390/en10111814 Li, H., Ma, X.-X., Gu, Z.-C., Wang, X., Li, J.-Z., Jiang, J., Fei, H., Yang, Z.-B.: Pyrolysis and combustion characteristics of boric acid and borax treated decorative bamboo filaments. BioResources 15, 8146–8160 (2020) Zhang, Y., Mu, J., Li, S., Zhao, Y.: The effect of boric acid-borax on the pyrolysis characteristics of poplar oriented strand board. Beijing Linye Daxue Xuebao J. Beijing For. Univ. 37, 127–133 (2015). https://doi.org/10.13332/j.cnki.jbfu.2015.01.003 Xu, J.Z., Gao, M., Guo, H.Z., Liu, X.L., Li, Z., Wang, H., Tian, C.M.: Study on the thermal degradation of cellulosic fibers treated with flame retardants. J. Fire Sci. 20, 227–235 (2002). https://doi.org/10.1177/0734904102020003905 Kinata, S.E., Loubar, K., Pataschiv, M., Bouslamti, A., Belloncle, C., Tazerout, M.: Slow pyrolysis of CCB-treated wood for energy recovery: Influence of chromium, copper and boron on pyrolysis process and optimization. J. Anal. Appl. Pyrolysis. 104, 210–217 (2013). https://doi.org/10.1016/j.jaap.2013.08.002 Wang, Q., Li, J., Winandy, J.E.: Chemical mechanism of fire retardance of boric acid on wood. Wood Sci. Technol. (2004). https://doi.org/10.1007/s00226-004-0246-4 Maniscalco, M., La Paglia, F., Iannotta, P., Caputo, G., Scargiali, F., Grisafi, F., Brucato, A.: Slow pyrolysis of an LDPE/PP mixture: kinetics and process performance. J. Energy Inst. 96, 234–241 (2021). https://doi.org/10.1016/j.joei.2021.03.006 Zhong, M., Chen, S., Wang, T., Liu, J., Mei, M., Li, J.: Co-pyrolysis of polyester and cotton via thermogravimetric analysis and adsorption mechanism of Cr(VI) removal by carbon in aqueous solution. J. Mol. Liq. 354, 118902 (2022). https://doi.org/10.1016/j.molliq.2022.118902 Vo, T.A., Tran, Q.K., Ly, H.V., Kwon, B., Hwang, H.T., Kim, J., Kim, S.-S.: Co-pyrolysis of lignocellulosic biomass and plastics: a comprehensive study on pyrolysis kinetics and characteristics. J. Anal. Appl. Pyrolysis. 163, 105464 (2022). https://doi.org/10.1016/j.jaap.2022.105464 Fekhar, B., Zsinka, V., Miskolczi, N.: Thermo-catalytic co-pyrolysis of waste plastic and paper in batch and tubular reactors for in-situ product improvement. J. Environ. Manage. 269, 110741 (2020). https://doi.org/10.1016/j.jenvman.2020.110741 Terry, L.M., Li, C., Chew, J.J., Aqsha, A., How, B.S., Loy, A.C.M., Chin, B.L.F., Khaerudini, D.S., Hameed, N., Guan, G., Sunarso, J.: Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: a review. Carbon Resour. Convers. 4, 239–250 (2021). https://doi.org/10.1016/j.crcon.2021.10.002 Simanungkalit, S.P., Mansur, D., Fitriady, M.A.: Effect of plastic blends on slow pyrolysis of oil palm empty fruit bunch. AIP Conf. Proc. 2024, 020003 (2018). https://doi.org/10.1063/1.5064289 Kusrini, E., Supramono, D., Degirmenci, V., Pranata, S., Bawono, A.A., Ani, N.: Improving the quality of pyrolysis oil from co-firing high-density polyethylene plastic waste and palm empty fruit bunches. Int. J. Technol. 9, 1498 (2018). https://doi.org/10.14716/ijtech.v9i7.2531 Chetehouna, K., Belayachi, N., Lemée, L., Hoxha, D., Rengel, B.: Pyrolysis gases released during the thermal degradation of insulation materials based on straw fibers. J. Therm. Anal. Calorim. 122, 1417–1422 (2015). https://doi.org/10.1007/s10973-015-4584-2 Duboc, O., Steiner, K., Radosits, F., Wenzel, W.W., Goessler, W., Santner, J.: Functional recycling of biobased, borate-stabilized insulation materials as B fertilizer. Environ. Sci. Technol. 53, 14620–14629 (2019). https://doi.org/10.1021/acs.est.9b04234 Mu, J., Lai, Z.Y.: Pyrolysis Characteristics of wood-based panels and its products. Presented at the July 5 (2017) ISO 18122:2015—Solid biofuels—Determination of ash content. D07 Committee: ASTM D1762–84—test method for chemical analysis of wood charcoal. ASTM International (2021) D02 Committee: ASTM D482–19—Test method for ash from petroleum products. ASTM International Wallace, J.M., Hobbs, P.V.: 3—atmospheric thermodynamics. In: Wallace, J.M., Hobbs, P.V. (eds.) Atmospheric science (2nd ed.), pp. 63–111. Academic Press, San Diego (2006) Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H., Vargun, E., Baysal, E., Turkoglu, T., Yuksel, M., Toker, H.: Thermal degradation of oriental beech wood impregnated with different inorganic salts. Maderas Cienc. Tecnol. 21, 163–170 (2019). https://doi.org/10.4067/S0718-221X2019005000204 ISO 18123:2015—solid biofuels—determination of the content of volatile matter. Pena, J., Villot, A., Gerente, C.: Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass Bioenergy. 132, 105435 (2020). https://doi.org/10.1016/j.biombioe.2019.105435 D02 Committee: ASTM D445–21—test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). ASTM International ISO 9277:2010—Determination of the specific surface area of solids by gas adsorption—BET method. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/49/44941.html Lopez Hurtado, P., Rouilly, A., Vandenbossche, V., Raynaud, C.: A review on the properties of cellulose fibre insulation. Build. Environ. 96, 170–177 (2016). https://doi.org/10.1016/j.buildenv.2015.09.031 Ansah, E., Wang, L., Shahbazi, G.: Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. (2016). https://doi.org/10.1016/j.wasman.2016.06.015 Naghavi, R., Abdoli, M., Karbassi, A.R., Adl, M.: Improving the quantity and quality of biogas production in tehran anaerobic digestion power plant by application of materials recirculation technique. Int. J. Renew. Energy Dev. 9, 167–175 (2020). https://doi.org/10.14710/ijred.9.2.167-175 Kim, D., Prawisudha, P., Yoshikawa, K.: Hydrothermal upgrading of Korean MSW for solid fuel production: effect of MSW composition. Presented at the March 16 (2017) Fan, J., Matharu, A., Zhang, Z., Macquarrie, D., Clark, J., Hunt, A., Shuttleworth, P., Gronnow, M., De Bruyn, M., Budarin, V.: Low-temperature microwave-assisted pyrolysis of waste office paper and the application of bio-oil as an Al adhesive. Green Chem. 17, 260–270 (2014). https://doi.org/10.1039/C4GC00768A Tihay, V., Boulnois, C., Gillard, P.: Influence of oxygen concentration on the kinetics of cellulose wadding degradation. Thermochim. Acta. 525, 16–24 (2011). https://doi.org/10.1016/j.tca.2011.07.016 Choudhary, A., Sheena, B.: Influences of elastane content, aesthetic finishes and fabric weight on mechanical and comfort properties of denim fabrics. J. Text. Eng. Fash. Technol. (2018). https://doi.org/10.15406/jteft.2018.04.00119 Otaigbes, J.U., Madbouly, A.: 11—the processing, structure and properties of elastomeric fibers. In: Eichhorn, S.J., Hearle, J.W.S., Jaffe, M., Kikutani, T. (eds.) Handbook of textile fibre structure, pp. 325–351. Woodhead Publishing (2009) LaRance, D.: The chemistry of denim. https://www.chemistryislife.com/the-chemistry-of-denim van der Velden, N.M., Patel, M.K., Vogtländer, J.G.: LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 19, 331–356 (2014). https://doi.org/10.1007/s11367-013-0626-9 Akı, S.U., Candan, C., Nergis, B., Önder, N.S.: Understanding denim recycling: a quantitative study with lifecycle assessment methodology. IntechOpen (2020) Arenales Rivera, J., Pérez López, V., Ramos Casado, R., Sánchez Hervás, J.-M.: Thermal degradation of paper industry wastes from a recovered paper mill using TGA: characterization and gasification test. Waste Manag. 47, 225–235 (2016). https://doi.org/10.1016/j.wasman.2015.04.031 Singh, Y.D., Mahanta, P., Bora, U.: Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production. Renew. Energy. 103, 490–500 (2017). https://doi.org/10.1016/j.renene.2016.11.039 McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002). https://doi.org/10.1016/S0960-8524(01)00118-3 Dorez, G., Ferry, L., Sonnier, R., Taguet, A., Lopez-Cuesta, J.-M.: Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. J. Anal. Appl. Pyrolysis. 107, 323–331 (2014). https://doi.org/10.1016/j.jaap.2014.03.017 Liu, M., Thygesen, A., Summerscales, J., Meyer, A.: Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind. Crops Prod. 108, 660–683 (2017). https://doi.org/10.1016/j.indcrop.2017.07.027 Prasad, S., Singh, A., Joshi, H.C.: Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007). https://doi.org/10.1016/j.resconrec.2006.05.007 Hu, G., Fu, S., Liumaki, H.: Hemicellulose in pulp affects paper properties and printability. Appita Technol. Innov. Manuf. Environ. (2013) Salmeia, K.A., Jovic, M., Ragaisiene, A., Rukuiziene, Z., Milasius, R., Mikucioniene, D., Gaan, S.: Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers 8, E293 (2016). https://doi.org/10.3390/polym8080293 Domingos, I., Ayata, U., Ferreira, J., Cruz-Lopes, L., Sen, A., Sahin, S., Esteves, B.: Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies 13, 5322 (2020). https://doi.org/10.3390/en13205322 Princi, E., Vicini, S., Marsano, E., Trefiletti, V.: Influence of the artificial weathering on thermal stability of paper-based materials. Thermochim. Acta. 468, 27–34 (2008). https://doi.org/10.1016/j.tca.2007.11.019 Pedieu, R., Koubaa, A., Riedl, B., Wang, X.-M., Deng, J.: Fire-retardant properties of wood particleboards treated with boric acid. Eur. J. Wood Wood Prod. 70, 191–197 (2012). https://doi.org/10.1007/s00107-011-0538-y Zigo, J., Rantuch, P., Balog, K.: Thermal decomposition of loose-fill cellulose thermal insulation. Adv. Mater. Res. 1001, 379–382 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1001.379 Zhang, J., Koubaa, A., Xing, D., Wang, H., Wang, Y., Liu, W., Zhang, Z., Wang, X., Wang, Q.: Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 312, 123586 (2020). https://doi.org/10.1016/j.biortech.2020.123586 Uddin, K.M.A., Ago, M., Rojas, O.J.: Hybrid films of chitosan, cellulose nanofibrils and boric acid: flame retardancy, optical and thermo-mechanical properties. Carbohydr. Polym. 177, 13–21 (2017). https://doi.org/10.1016/j.carbpol.2017.08.116 Wicklein, B., Kocjan, D., Carosio, F., Camino, G., Bergström, L.: Tuning the nanocellulose-borate interaction to achieve highly flame retardant hybrid materials. Chem. Mater. 28, 1985–1989 (2016). https://doi.org/10.1021/acs.chemmater.6b00564 Zhang, J., Koubaa, A., Xing, D., Liu, W., Wang, Q., Wang, X., Wang, H.: Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide. Mater. Des. 191, 108589 (2020). https://doi.org/10.1016/j.matdes.2020.108589 Fei, C.U.I., Long, Y.A.N.: Flame retardancy and pyrolysis kinetics of Pinus yunnanensis flame-retarded synergically by NH4H2PO4 and borax. China Saf. Sci. J. 28, 38 (2018). https://doi.org/10.16265/j.cnki.issn1003-3033.2018.07.007 Balcı, S., Sezgi, N.A., Eren, E.: Boron oxide production kinetics using boric acid as raw material. Ind. Eng. Chem. Res. 51, 11091–11096 (2012). https://doi.org/10.1021/ie300685x Oudiani, A.E., Chaabouni, Y., Msahli, S., Sakli, F.: Crystal transition from cellulose I to cellulose II in NaOH treated Agave Americana L fibre. Carbohydr. Polym. 86, 1221–1229 (2011). https://doi.org/10.1016/j.carbpol.2011.06.037 Kolpak, F.J., Blackwell, J.: Determination of the structure of cellulose II. Macromolecules 9, 273–278 (1976). https://doi.org/10.1021/ma60050a019 Méndez, A., Fidalgo, J.M., Guerrero, F., Gascó, G.: Characterization and pyrolysis behaviour of different paper mill waste materials. J. Anal. Appl. Pyrolysis. 86, 66–73 (2009). https://doi.org/10.1016/j.jaap.2009.04.004 Rantuch, P., Chrebet, T.: Thermal decomposition of cellulose insulation. Cellul. Chem. Technol. 48, 461–467 (2014) Capart, R., Khezami, L., Burnham, A.K.: Assessment of various kinetic models for the pyrolysis of a microgranular cellulose. Thermochim. Acta. 417, 79–89 (2004). https://doi.org/10.1016/j.tca.2004.01.029 Mamleev, V., Bourbigot, S., Yvon, J.: Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J. Anal. Appl. Pyrolysis. 80, 151–165 (2007). https://doi.org/10.1016/j.jaap.2007.01.013 Rychlý, J., Strlič, M., Matisová-Rychlá, L., Kolar, J.: Chemiluminescence from paper I: kinetic analysis of thermal oxidation of cellulose. Polym. Degrad. Stab. 78, 357–367 (2002). https://doi.org/10.1016/S0141-3910(02)00187-8 Thi, V.V.D.: Matériaux composites à fibres naturelles/polymère biodégradables ou non (2011). https://tel.archives-ouvertes.fr/tel-00652477 Magovac, E., Vončina, B., Jordanov, I., Grunlan, J.C., Bischof, S.: Layer-by-layer deposition: a promising environmentally benign flame-retardant treatment for cotton, polyester, polyamide and blended textiles. Materials. 15, 432 (2022). https://doi.org/10.3390/ma15020432 Zhu, P., Sui, S., Wang, B., Sun, K., Sun, G.: A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY–GC–MS. J. Anal. Appl. Pyrolysis. 71, 645–655 (2004). https://doi.org/10.1016/j.jaap.2003.09.005 Muralidhara, K.S., Sreenivasan, S.: Thermal degradation kinetic data of polyester, cotton and polyester-cotton blended textile material. 6 (2010) Manich, A., Pérez-Rentero, S., Alonso, C., Coderch, L., Martí, M.: Thermal analysis of healthy and ecological friendly flame retardants for textiles. KnE Eng. (2020). https://doi.org/10.18502/keg.v5i6.7028 Singh, R.K., Ruj, B., Sadhukhan, A.K., Gupta, P.: Thermal degradation of waste plastics under non-sweeping atmosphere: part 1: effect of temperature, product optimization, and degradation mechanism. J. Environ. Manage. 239, 395–406 (2019). https://doi.org/10.1016/j.jenvman.2019.03.067 Das, P., Tiwari, P.: Thermal degradation study of waste polyethylene terephthalate (PET) under inert and oxidative environments. Thermochim. Acta. 679, 178340 (2019). https://doi.org/10.1016/j.tca.2019.178340 Monahan, A.R.: Thermal degradation of polyacrylonitrile in the temperature range 280–450°c. J. Polym. Sci. [A1] 4, 2391–2399 (1966). https://doi.org/10.1002/pol.1966.150041005 Lin, Y., Yu, B., Jin, X., Song, L., Hu, Y.: Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer. RSC Adv. 6, 49633–49642 (2016). https://doi.org/10.1039/C6RA06544A Tomaszewska, K., Kałużna-Czaplińska, J., Jóźwiak, W.: Thermal and thermo-catalytic degradation of polyolefins as a simple and efficient method of landfill clearing. Pol. J. Chem. Technol. (2010). https://doi.org/10.2478/v10026-010-0034-x Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy. 97, 491–497 (2012). https://doi.org/10.1016/j.apenergy.2011.12.056 Mofokeng, J., Luyt, A., Tábi, T., Kovacs, J.: Comparison of injection moulded, natural fibre reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 25, 927–948 (2012). https://doi.org/10.1177/0892705711423291 Jia, H., Ben, H., Luo, Y., Wang, R.: Catalytic fast pyrolysis of poly (ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 12, 705 (2020). https://doi.org/10.3390/polym12030705 Mukhambet, Y., Shah, D., Tatkeyeva, G., Sarbassov, Y.: Slow pyrolysis of flax straw biomass produced in Kazakhstan: Characterization of enhanced tar and high-quality biochar. Fuel 324, 124676 (2022). https://doi.org/10.1016/j.fuel.2022.124676 Yunchu, H., Peijang, Z., Songsheng, Q.: TG-DTA studies on wood treated with flame-retardants. Holz Als Roh- Werkst. 58, 35–38 (2000). https://doi.org/10.1007/s001070050382 Tang, W., Neill, W.: Effect of flame retardants on pyrolysis and combustion of cellulose. J. Polym. Sci. C Polym. Symp. 6, 65–81 (2007). https://doi.org/10.1002/polc.5070060109 Wang, H., Guo, S., Zhang, C., Qi, Z., Li, L., Zhu, P.: Flame retardancy and thermal behavior of wool fabric treated with a phosphorus-containing polycarboxylic acid. Polymers 13, 4111 (2021). https://doi.org/10.3390/polym13234111 Williams, P.T., Cunliffe, A., Jones, N.: Recovery of value-added products from the pyrolytic recycling of glass-fibre-reinforced composite plastic waste. J. Energy Inst. 78, 51–61 (2005). https://doi.org/10.1179/174602205X40504 Agblevor, F.A., Besler, S.: Inorganic compounds in biomass feedstocks 1: effect on the quality of fast pyrolysis oils. Energy Fuels. 10, 293–298 (1996). https://doi.org/10.1021/ef950202u Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy. 34, 67–74 (2010). https://doi.org/10.1016/j.biombioe.2009.09.012 Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrolysis. 93, 170–177 (2012). https://doi.org/10.1016/j.jaap.2011.11.010 Mustafa, A., Calay, R.K., Mustafa, M.Y.: A techno-economic study of a biomass gasification plant for the production of transport biofuel for small communities. Energy Procedia. 112, 529–536 (2017). https://doi.org/10.1016/j.egypro.2017.03.1111 Wahbeh, B., Hamed, T.A., Kasher, R.: Hydrogen and boric acid production via boron hydrolysis. Renew. Energy. 48, 10–15 (2012). https://doi.org/10.1016/j.renene.2012.04.043 Colson, V., Bourebrab, M., Dalmais, M., Jadeau, O., Lanos, C.: Formulation of novel fire retardant additives for biobased insulation material. Acad. J. Civ. Eng. 37, 134–141 (2019). https://doi.org/10.26168/icbbm2019.19 Pena, J.J.: Study of chars prepared from biomass wastes : material and energy recovery, (2018). https://www.theses.fr/2018IMTA0104 Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014). https://doi.org/10.1016/j.biortech.2014.07.044 Dhahak, A., Hild, G., Rouaud, M., Mauviel, G., Burkle-Vitzthum, V.: Slow pyrolysis of polyethylene terephthalate: online monitoring of gas production and quantitative analysis of waxy products. J. Anal. Appl. Pyrolysis. 142, 104664 (2019). https://doi.org/10.1016/j.jaap.2019.104664 Parthasarathy, P., Narayanan, K.S.: Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield—a review. Renew. Energy. 66, 570–579 (2014). https://doi.org/10.1016/j.renene.2013.12.025 Udomsirichakorn, J., Salam, P.A.: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew. Sustain. Energy Rev. 30, 565–579 (2014). https://doi.org/10.1016/j.rser.2013.10.013 Demirbas, M.F.: Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources Part Recovery Util. Environ. Eff. 28, 245–252 (2006). https://doi.org/10.1080/009083190890003 Basu, P.: Chapter 5—gasification theory and modeling of gasifiers. In: Basu, P. (ed.) Biomass gasification and pyrolysis, pp. 117–165. Academic Press, Boston (2010) Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A., Mahgoub, B.K.M.: Low and medium calorific value gasification gas combustion in IC engines. IntechOpen (2016) Chae, J.-I., Kim, T., Lee, K., Jo, R., Kang, J.-W., Park, Y.-S.: Catalytic technologies for CO hydrogenation for the production of light hydrocarbons and middle distillates. Catalysts 10, 99 (2020). https://doi.org/10.3390/catal10010099 Espuelas, S., Marcelino-Sádaba, S., del Castillo, J.M., Garcia, B., Seco, A.: Valorization of insulation cellulose waste as solid biomass fuel. Appl. Sci. 11, 8223 (2021). https://doi.org/10.3390/app11178223 Gaunt, J.L., Lehmann, J.: Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol. 42, 4152–4158 (2008). https://doi.org/10.1021/es071361i