Lewis, 2007, MRS Bull., 808, 10.1557/mrs2007.168
IEA, World Energy Outlook 2019, OECD, 2019
P. Breeze , Power Generation Technologies , Elsevier , 2019
M. Tao , SpringerBriefs in Applied Sciences and Technology , Springer Verlag , 2014 , pp. 9–20
Tao, 2011, Sol. Energy Mater. Sol. Cells, 95, 3176, 10.1016/j.solmat.2011.06.013
Graedel, 2015, Proc. Natl. Acad. Sci. U. S. A., 112, 4257, 10.1073/pnas.1500415112
Parisi, 2014, Renewable Sustainable Energy Rev., 39, 124, 10.1016/j.rser.2014.07.079
Lee, 2014, Energy Build., 81, 38, 10.1016/j.enbuild.2014.06.010
Sathre, 2014, Energy Environ. Sci., 7, 3264, 10.1039/C4EE01019A
Juang, 2019, Front. Chem., 7, 209, 10.3389/fchem.2019.00209
Yun, 2018, Energy Environ. Sci., 11, 476, 10.1039/C7EE03165C
Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F
Li, 2019, Sol. Energy, 177, 80, 10.1016/j.solener.2018.11.017
Wei, 2008, Nanotechnology, 19, 424006, 10.1088/0957-4484/19/42/424006
Xue, 2014, J. Phys. Chem. C, 118, 16352, 10.1021/jp408663d
J. Zhang , M.Freitag , A.Hagfeldt and G.Boschloo , Springer , Singapore , 2018 , pp. 151–185
Boschloo, 2019, Front. Chem., 7, 77, 10.3389/fchem.2019.00077
Tian, 2019, Sustainable Energy Fuels, 3, 888, 10.1039/C8SE00581H
Perera, 2015, Angew. Chem., Int. Ed., 54, 3758, 10.1002/anie.201409877
Carella, 2018, Front. Chem., 6, 481, 10.3389/fchem.2018.00481
Benazzi, 2019, J. Mater. Chem. C, 7, 10409, 10.1039/C9TC01822K
Pham, 2017, J. Mater. Chem. C, 121, 129
Bonomo, 2018, ChemistrySelect, 3, 6729, 10.1002/slct.201800827
Click, 2014, Phys. Chem. Chem. Phys., 16, 26103, 10.1039/C4CP04010D
Wu, 2015, Eur. J. Org. Chem., 6850, 10.1002/ejoc.201501036
Xu, 2019, ChemSusChem, 12, 3243, 10.1002/cssc.201901102
Nikolaou, 2017, J. Mater. Chem. A, 5, 21077, 10.1039/C7TA06500K
Gibson, 2011, J. Phys. Chem. C, 115, 9772, 10.1021/jp110473n
Iftikhar, 2019, Materials, 12, 1998, 10.3390/ma12121998
Larcher, 2015, Nat. Chem., 7, 19, 10.1038/nchem.2085
Kawazoe, 2000, MRS Bull., 25, 28, 10.1557/mrs2000.148
A. Banerjee and K.Chattopadhyay , Progress in Crystal Growth and Characterization of Materials , 2005 , vol. 50, pp. 52–105
Yim, 2018, npj Comput. Mater., 4, 17, 10.1038/s41524-018-0073-z
Rajeshwar, 2018, J. Electrochem. Soc., 165, H3192, 10.1149/2.0271804jes
Schiavo, 2018, Phys. Chem. Chem. Phys., 20, 14082, 10.1039/C8CP00848E
Williamson, 2019, Chem. Mater., 31, 2577, 10.1021/acs.chemmater.9b00257
Pawar, 2018, Sci. Rep., 8, 1, 10.1038/s41598-018-21821-z
Miller, 1997, J. Electrochem. Soc., 144, 1995, 10.1149/1.1837734
Wood, 2016, Phys. Chem. Chem. Phys., 18, 10727, 10.1039/C5CP05326A
D'Amario, 2017, ACS Appl. Mater. Interfaces, 9, 33470, 10.1021/acsami.7b01532
Mori, 2008, J. Phys. Chem. C, 112, 16134, 10.1021/jp803919b
Langmar, 2015, Angew. Chem., Int. Ed., 54, 7688, 10.1002/anie.201501550
Zhang, 2012, J. Mater. Chem., 22, 2456, 10.1039/C1JM14478B
Barreca, 2009, ChemSusChem, 2, 230, 10.1002/cssc.200900032
Jin, 2007, Catal. Commun., 8, 1267, 10.1016/j.catcom.2006.11.019
Du, 2014, Chem. Res. Chin. Univ., 30, 661, 10.1007/s40242-014-4020-3
Huang, 2015, Angew. Chem., Int. Ed., 54, 6857, 10.1002/anie.201500274
Furmansky, 2012, J. Mater. Chem., 22, 20334, 10.1039/c2jm34118b
Yu, 2016, NPG Asia Mater., 8, e305, 10.1038/am.2016.89
Shan, 2016, Energy Environ. Sci., 9, 3693, 10.1039/C6EE02903E
Scanlon, 2010, J. Chem. Phys., 132, 024707, 10.1063/1.3290815
Fleischer, 2017, Materials, 10, 1019, 10.3390/ma10091019
Zhang, 2019, Energy Chem., 1, 100015, 10.1016/j.enchem.2019.100015
Díez-García, 2017, ChemSusChem, 10, 2457, 10.1002/cssc.201700166
Liu, 2016, Appl. Phys. Lett., 108, 233506, 10.1063/1.4953460
Dong, 2019, Materials, 16, 958, 10.3390/ma12060958
Bandara, 2007, Semicond. Sci. Technol., 22, 20, 10.1088/0268-1242/22/2/004
Nattestad, 2011, J. Photonics Energy, 1, 011103, 10.1117/1.3528236
Ahmed, 2014, J. Alloys Compd., 591, 275, 10.1016/j.jallcom.2013.12.199
Miclau, 2017, Mater. Today, 4, 6975, 10.1016/j.matpr.2017.07.027
Koriche, 2005, Int. J. Hydrogen Energy, 30, 693, 10.1016/j.ijhydene.2004.06.011
Choi, 2017, J. Mater. Chem. A, 5, 10165, 10.1039/C7TA01919J
Zhu, 2016, J. Alloys Compd., 685, 836, 10.1016/j.jallcom.2016.06.231
Powar, 2014, J. Mater. Chem. C, 118, 16375
Creissen, 2019, ACS Catal., 9, 9530, 10.1021/acscatal.9b02984
Renaud, 2014, J. Mater. Chem. C, 118, 54
Kumagai, 2017, Chem. Sci., 8, 4242, 10.1039/C7SC00940B
Jiang, 2016, RSC Adv., 6, 1549, 10.1039/C5RA24397A
Li, 2019, Chem. Commun., 55, 12940, 10.1039/C9CC06781G
Renaud, 2015, RSC Adv., 5, 60148, 10.1039/C5RA07859H
Shi, 2014, Energy Technol., 2, 517, 10.1002/ente.201400013
Li, 2018, Catalysts, 8, 108, 10.3390/catal8030108
Read, 2012, J. Phys. Chem. Lett., 3, 1872, 10.1021/jz300709t
Prévot, 2015, ChemSusChem, 8, 1359, 10.1002/cssc.201403146
Xiong, 2012, J. Mater. Chem., 22, 24760, 10.1039/c2jm35101c
Lee, 2014, Bull. Korean Chem. Soc., 35, 3261, 10.5012/bkcs.2014.35.11.3261
Zhang, 2019, J. Phys. D: Appl. Phys., 52, 405501, 10.1088/1361-6463/ab2fee
Windle, 2019, J. Am. Chem. Soc., 141, 9593, 10.1021/jacs.9b02521
Varga, 2018, Electrochim. Acta, 272, 22, 10.1016/j.electacta.2018.03.185
Saadi, 2006, Sol. Energy, 80, 272, 10.1016/j.solener.2005.02.018
Creissen, 2018, Chem. Sci., 9, 1439, 10.1039/C7SC04476C
Nassar, 2018, ChemistrySelect, 3, 968, 10.1002/slct.201702997
Hiramatsu, 2003, Appl. Phys. Lett., 82, 1048, 10.1063/1.1544643
Doussier-Brochard, 2010, Inorg. Chem., 49, 3074, 10.1021/ic902521r
Papadas, 2018, Adv. Sci., 5, 1701029, 10.1002/advs.201701029
Shi, 2014, Nanoscale Res. Lett., 9, 608, 10.1186/1556-276X-9-608
An, 2015, Adv. Funct. Mater., 25, 6814, 10.1002/adfm.201503784
Yin, 2016, Nanoscale, 8, 1390, 10.1039/C5NR06197K
Joshi, 2011, J. Mater. Chem. C, 115, 13534
Crespo, 2018, Sol. Energy Mater. Sol. Cells, 179, 305, 10.1016/j.solmat.2017.12.025
Li, 2018, J. Cleaner Prod., 183, 415, 10.1016/j.jclepro.2018.02.088
Saadi, 2006, Renewable Energy, 31, 2245, 10.1016/j.renene.2005.10.014
Gawande, 2015, Chem. Soc. Rev., 44, 7540, 10.1039/C5CS00343A
Jiang, 2018, J. Alloys Compd., 769, 605, 10.1016/j.jallcom.2018.07.328
Tian, 2017, Phys. Chem. Chem. Phys., 20, 36, 10.1039/C7CP07088H
Tian, 2018, Chem. Commun., 54, 3739, 10.1039/C8CC00505B
Tian, 2019, J. Mater. Chem. C, 123, 26151
Yu, 2009, Nanoscale Res. Lett., 4, 1, 10.1007/s11671-008-9200-y
Jang, 2019, ChemSusChem, 12, 1835, 10.1002/cssc.201802596
Stadler, 2012, Materials, 5, 661, 10.3390/ma5040661
Dini, 2015, Coord. Chem. Rev., 304-305, 179, 10.1016/j.ccr.2015.03.020
Satish, 2018, Mater. Today, 2401, 10.1016/j.matpr.2017.11.018
Brisse, 2017, ACS Appl. Mater. Interfaces, 9, 2369, 10.1021/acsami.6b12912
S. Koussi-Daoud and T.Pauporté , Oxide-based Materials and Devices VI , 2015 , p. 936425
Glynn, 2017, Adv. Mater. Interfaces, 4, 1600610, 10.1002/admi.201600610
Bonomo, 2016, J. Phys. Chem. C, 120, 16340, 10.1021/acs.jpcc.6b03965
Ursu, 2019, J. Alloys Compd., 802, 86, 10.1016/j.jallcom.2019.06.180
Alias, 2012, Phys. Status Solidi C, 9, 198, 10.1002/pssc.201100290
Sumikura, 2008, J. Photochem. Photobiol., A, 199, 1, 10.1016/j.jphotochem.2008.04.007
Zorkipli, 2016, Procedia Chem., 19, 626, 10.1016/j.proche.2016.03.062
Jlassi, 2017, Surf. Interfaces, 6, 218, 10.1016/j.surfin.2016.10.006
Read, 2012, J. Phys. Chem. Lett., 3, 1872, 10.1021/jz300709t
Koussi-Daoud, 2017, ChemElectroChem, 4, 2618, 10.1002/celc.201700495
Shao, 2012, Adv. Funct. Mater., 22, 3907, 10.1002/adfm.201200365
Sonavane, 2010, J. Alloys Compd., 489, 667, 10.1016/j.jallcom.2009.09.146
Qiao, 2017, Adv. Colloid Interface Sci., 244, 199, 10.1016/j.cis.2016.01.005
Brewster, 2020, Chem. Mater., 1