Towards optimal reliability-based design of wind turbines towers using artificial intelligence

Engineering Structures - Tập 294 - Trang 116778 - 2023
Jonathan De Anda1, Sonia E. Ruiz1, Edén Bojórquez2, Indira Inzunza-Aragon3
1Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Del. Coyoacán, C.P. 04510 Mexico City, Mexico
2Facultad de Ingeniería, Universidad Autónoma de Sinaloa, Calzada de las Américas y B. Universitarios s/n, C.P. 80040, Culiacán, Sinaloa, Mexico
3Facultad de Ingeniería Civil, Universidad Autónoma de Coahuila, Carretera Torreón-Matamoros km 7.5., C.P. 27276 Torreón, Coahuila, Mexico

Tài liệu tham khảo

Global Wind Energy Council, GWEC. Global Wind Report; 2021. Asociación Mexicana de Energía Eólica. AMDEE, PWC. El potencial eólico mexicano: Oportunidades y retos en el nuevo sector eléctrico; 2014. p. 1–20. Det Norske Veritas and Wind Energy Department, Risø Laboratory. Guidelines for design of wind turbines. Copenhagen; 2002. International Electrotechnical Commission. IEC 61400-1. Wind turbine generator systems -Part 1: design requirements. Switzerland; 2005. p. 1–92. Esteva L, Villaverde R. Seismic risk, design spectra and structural reliability. In: Proceedings of Fifth World Conference on Earthquake Engineering; 1973;2:2586–96. Cornell CA. Reliability- based earthquake- resistant design: the future. In: Eleventh world conference on earthquake engineering; 1996. Esteva, 2002, Life-cycle optimization in the establishment of performance-acceptance parameters for seismic design, Struct Saf, 24, 187, 10.1016/S0167-4730(02)00024-3 Cornell, 2002, Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines, J Struct Eng, 128, 526, 10.1061/(ASCE)0733-9445(2002)128:4(526) Deierlein GG, Krawinkler H, Cornell CA, Blume JA. A framework for performance-based earthquake engineering. In: Proceedings of the 2003 Pacific conference on earthquake engineering. Vol. 273; 2003. p. 140–8. Ciampoli, 2011, Performance-based wind engineering: towards a general procedure, Struct Saf, 33, 367, 10.1016/j.strusafe.2011.07.001 Chuang, 2017, A performance-based design framework for the integrated collapse and non-collapse assessment of wind excited buildings, Eng Struct, 150, 746, 10.1016/j.engstruct.2017.07.030 Van De Lindt, 2009, Performance-based wind engineering for wood-frame buildings, J Struct Eng, 135, 169, 10.1061/(ASCE)0733-9445(2009)135:2(169) Seo, 2013, Estimating life-cycle monetary losses due to wind hazards: fragility analysis of long-span bridges, Eng Struct, 56, 1593, 10.1016/j.engstruct.2013.07.031 Paulotto C, Ciampoli M, Augusti G. Some proposals for a first step towards a performance based wind engineering. IFED-international forum on engineering decision making; 2004. Cui, 2015, Simulation and analysis of intervention costs due to wind-induced damage on tall buildings, Eng Struct, 87, 183, 10.1016/j.engstruct.2015.01.001 Inzunza-Aragón, 2020, Capacity and demand factors changing over time. Application to wind turbine steel towers, Eng Struct, 206 Cheng, 2008, Reliability analysis of structures using artificial neural network based genetic algorithms, Comput Methods Appl Mech Eng, 197, 3742, 10.1016/j.cma.2008.02.026 Cheng, 2010, An artificial neural network based genetic algorithm for estimating the reliability of long span suspension bridges, Finite Elem Anal Des, 46, 658, 10.1016/j.finel.2010.03.005 Zhao, 2020, On the use of artificial neural networks for condition monitoring of pump-turbines with extended operation, Measurement, 163 Ciang, 2008, Structural health monitoring for a wind turbine system: A review of damage detection methods, Meas Sci Technol, 19, 122001, 10.1088/0957-0233/19/12/122001 Jha, 2017, Structural reliability analysis using a hybrid HDMR-ANN method, J Cent South Univ, 24, 2532, 10.1007/s11771-017-3666-7 Hosni Elhewy, 2006, Reliability analysis of structures using neural network method, Probab Eng Mech, 21, 44, 10.1016/j.probengmech.2005.07.002 Le, 2022, Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques, Eng Comput, 38, 3283, 10.1007/s00366-021-01461-0 Nagesh, 2020, ANN Based design parameter estimation for structural systems, Vol. 936 Lu, 2018, Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach, Appl Ocean Res, 74, 69, 10.1016/j.apor.2018.02.016 Cheng, 2009, A hybrid artificial neural network method with uniform design for structural optimization, Comput Mech, 44, 61, 10.1007/s00466-008-0355-2 Sha, 2013, Structural reliability optimization design based on artificial neural network, Adv Mat Res, 1877 Arana, 2021, Optimization of structural elements in highly seismic areas using neural networks, Vol. 1048 Deb, 2001 Barraza M, Bojórquez E, Fernández E, López-Almasa F. Diseño Sísmico Edificios de Acero: Algoritmos Genéticos vs Enjambre de Partículas. In: Proceedings, XXI Congreso Nacional de Ingeniería Sísmica, Guadalajara, México. Vol. 60; 2017. p. 1–25 [in Spanish]. Vargas, 2021, Solving multi-objective structural optimization problems using GDE3 and NSGA-II with reference points, Eng Struct, 239, 112187, 10.1016/j.engstruct.2021.112187 Esteva, 2011, Life-cycle optimisation in earthquake engineering, Struct Infrastruct Eng, 7, 33, 10.1080/15732471003588270 Negm, 2000, Structural design optimization of wind turbine towers, Comput Struct, 74, 649, 10.1016/S0045-7949(99)00079-6 Yoshida, 2006, Wind turbine tower optimization method using a genetic algorithm, Wind Eng, 30, 453, 10.1260/030952406779994150 Uys, 2007, Optimisation of a steel tower for a wind turbine structure, Eng Struct, 29, 1337, 10.1016/j.engstruct.2006.08.011 Nicholson JC. Design of wind turbine tower and foundation systems: optimization approach. MSc. Thesis. University of Iowa; 2011. doi: 10.17077/etd.bhnu76gr. Veldkamp HF. Chances in wind energy. A probabilistic approach to wind turbine fatigue design. Ph.D. Thesis. Delft University of Technology; 2006. Perelmuter, 2013, Parametric optimization of steel shell towers of high-power wind turbines, Proc Eng, 57, 895, 10.1016/j.proeng.2013.04.114 Zhu, 2020, Multi-objective aerodynamic and structural integrated optimization design of wind turbines at the system level through a coupled blade-tower model, Renew Energy, 150, 523, 10.1016/j.renene.2020.01.013 Atashfaraz, 2020, Efficiency investigation of hybrid sliding rocking columns as elevated reservoirs supporting systems, Soil Dyn Earthq Eng, 136, 10.1016/j.soildyn.2020.106222 Atashfaraz, 2021, Post-tensioned tendons for enhancing the seismic behaviour of base-isolated monopole transmission towers, Eng Struct, 247, 10.1016/j.engstruct.2021.113222 Esteva L. Criterios para la construcción de espectros para diseño sísmico Instituto Materiales y Modelos Estructurales, Caracas, Venezuela; 1967. p. 48–78. Cornell, 1968, Engineering seismic risk analysis, Bull Earthq Eng, 58, 1583 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings IEEE international conference on neural networks; 1942–8. doi: 10.1109/ICNN.1995.488968. Moore J, Chapman R, Dozier G. Multiobjective particle swarm optimization. In: Proceedings of the 38th annual on Southeast regional conference. Clemson, South Carolina: ACM Press; 2000. doi: 10.1145/1127716.1127729. Coello Coello CA, Lechuga MS. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation (CEC). Vol. 2; 2002. p. 1051–6. doi: 10.1109/CEC.2002.1004388. Berny-Brandt, 2016, Reliability over time of wind turbines steel towers subjected to fatigue, Wind Struct, Int J, 23, 75, 10.12989/was.2016.23.1.075 Berny-Brandt EA. Influencia de daño por fatiga en la confiabilidad de aerogeneradores. MSc. Thesis. Universidad Nacional Autónoma de México; 2015 [in Spanish]. Vaghela, 2014, Door opening analysis of wind turbine steel tubular tower, Int J Res Eng Technol, 3, 491, 10.15623/ijret.2014.0305090 Kamath SR. Preliminary design of composite wind turbine towers. MSc. Thesis. Delft University of Technology; 2017. Diaconita, 2022, Estimation of the tower shape effect on the stress-strain behavior of wind turbines operating under offshore boundary conditions, Inventions, 7, 10.3390/inventions7010011 Inzunza-Aragón I. Cálculo de factores parciales de seguridad para el diseño por fatiga de torres de aerogeneradores. Ph.D. Thesis. Universidad Nacional Autónoma de México; 2021 [in Spanish]. Al-Kaimakchi A. Optimization of alternative wind turbine towers in low wind resource regions. MSc. Thesis. Florida State University; 2017. Jaramillo, 2004, Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case, Renew Energy, 29, 1613, 10.1016/j.renene.2004.02.001 Bergey, 1979, The Lanchester Betz limit, J Energy, 31, 382, 10.2514/3.48013 Inzunza-Aragón, 2022, Use of artificial neural networks and response surface methodology for evaluating the reliability index of steel wind towers, Adv Civ Eng, 2022, 1, 10.1155/2022/4219524 Elaki, 2016, Structural reliability: an assessment using a new and efficient two-phase method based on artificial neural network and a harmony search algorithm, Civ Eng Infrastruct J, 49, 1 Raudys, 1991, Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Trans Pattern Anal Mach Intell, 13, 252, 10.1109/34.75512 Chen, 2000, Neural network based stereotyping for user profiles, Neural Comput Appl, 9, 259, 10.1007/s005210070003 Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation (CEC). Vol. 1; 2000. p. 84–8. doi: 10.1109/CEC.2000.870279. Al-Sanad, 2021, Reliability-based design optimisation framework for wind turbine towers, Renew Energy, 167, 942, 10.1016/j.renene.2020.12.022