Towards new enzymes for biofuels: lessons from chitinase research
Tài liệu tham khảo
Merino, 2007, Progress and challenges in enzyme development for biomass utilization, Adv. Biochem. Eng. Biotechnol., 108, 95
Horn, 2006, Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens, FEBS J., 273, 491, 10.1111/j.1742-4658.2005.05079.x
Hahn-Hägerdal, 2006, Bio-ethanol – the fuel of tomorrow from the residues of today, Trends Biotechnol., 24, 549, 10.1016/j.tibtech.2006.10.004
Himmel, 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, 315, 804, 10.1126/science.1137016
Wyman, 2007, What is (and is not) vital to advancing cellulosic ethanol, Trends Biotechnol., 25, 153, 10.1016/j.tibtech.2007.02.009
Reese, 1950, The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis, J. Bacteriol., 59, 485, 10.1128/JB.59.4.485-497.1950
Teeri, 1997, Crystalline cellulose degradation: new insight into the function of cellobiohydrolases, Trends Biotechnol., 15, 160, 10.1016/S0167-7799(97)01032-9
Rouvinen, 1990, Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei, Science, 249, 380, 10.1126/science.2377893
Vaaje-Kolstad, 2005, Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21, J. Biol. Chem., 280, 11313, 10.1074/jbc.M407175200
Vaaje-Kolstad, 2005, The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation, J. Biol. Chem., 280, 28492, 10.1074/jbc.M504468200
Suzuki, 1998, Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170, Biosci. Biotechnol. Biochem., 62, 128, 10.1271/bbb.62.128
Mitsuhashi, 2007, Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane, J. Virol., 81, 4235, 10.1128/JVI.02300-06
Schnellmann, 1994, The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline α-chitin of fungi and other organisms, Mol. Microbiol., 13, 807, 10.1111/j.1365-2958.1994.tb00473.x
Cosgrove, 2000, Loosening of plant cell walls by expansins, Nature, 407, 321, 10.1038/35030000
Qin, 2004, Plant degradation: a nematode expansin acting on plants, Nature, 427, 30, 10.1038/427030a
McQueen-Mason, 1994, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce cell wall extension, Proc. Natl. Acad. Sci. U. S. A., 91, 6574, 10.1073/pnas.91.14.6574
Cosgrove, D.J. (2001) The Penn State Research Foundation. Enhancement of accessibility of cellulose by expansins, United States Patent 20016326470
Cosgrove, D.J. and Tanada, T. (2007) The Penn State Research Foundation. Use of GR2 proteins to modify cellulosic materials and to enhance enzymatic and chemical modification of cellulose, United States Patent 20070166805
Han, 2007, Synergism between corn stover protein and cellulase, Enzyme Microb. Technol., 41, 638, 10.1016/j.enzmictec.2007.05.012
Saloheimo, 2002, Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials, Eur. J. Biochem., 269, 4202, 10.1046/j.1432-1033.2002.03095.x
Foreman, 2003, Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei, J. Biol. Chem., 278, 31988, 10.1074/jbc.M304750200
Coutinho, 1999, Carbohydrate-active enzymes: an integrated database approach, 3
Boraston, 2004, Carbohydrate-binding modules: fine-tuning polysaccharide recognition, Biochem. J., 382, 769, 10.1042/BJ20040892
Gilkes, 1988, Precise excision of the cellulose binding domain from two Cellulomonas fimi cellulases by an homologous protease and the effect on catalysis, J. Biol. Chem., 263, 10401, 10.1016/S0021-9258(19)81530-2
Tomme, 1988, Studies on the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function of two cellobiohydrolases by limited proteolysis, Eur. J. Biochem., 170, 575, 10.1111/j.1432-1033.1988.tb13736.x
Carrard, 2000, Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose, Proc. Natl. Acad. Sci. U. S. A., 97, 10342, 10.1073/pnas.160216697
Lehtio, 2003, The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules, Proc. Natl. Acad. Sci. U. S. A., 100, 484, 10.1073/pnas.212651999
Watanabe, 1994, The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation, J. Bacteriol., 176, 4465, 10.1128/jb.176.15.4465-4472.1994
Din, 1991, Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase, Biotechnology., 9, 1096, 10.1038/nbt1191-1096
Pages, 1997, Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation, J. Bacteriol., 179, 2810, 10.1128/jb.179.9.2810-2816.1997
Gao, 2001, Non-hydrolytic disruption of crystalline structure of cellulose by cellulose binding domain and linker sequence of cellobiohydrolase I from Penicillium janthinellum, Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 33, 13
Kataeva, 2002, The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose by modifying its surface, Appl. Environ. Microbiol., 68, 4292, 10.1128/AEM.68.9.4292-4300.2002
Xiao, 2001, Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose, Biotechnol. Lett., 23, 711, 10.1023/A:1010325122851
Nimlos, 2007, Molecular modelling suggests induced fit of family I carbohydrate-binding modules with a broken-chain cellulose surface, Protein Eng. Des. Sel., 20, 179, 10.1093/protein/gzm010
Vårum, 2005, Structure-property relationship in chitosans, 625
Horn, 2006, Costs and benefits of processivity in enzymatic degradation of recalcitrant polysaccharides, Proc. Natl. Acad. Sci. U. S. A., 103, 18089, 10.1073/pnas.0608909103
Varrot, 2003, Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens, Structure, 11, 855, 10.1016/S0969-2126(03)00124-2
Koivula, 1998, Tryptophan 272: an essential determinant of crystalline cellulose degradation by Trichoderma reesei cellobiohydrolase Cel6A, FEBS Lett., 429, 341, 10.1016/S0014-5793(98)00596-1
Von Ossowski, 2003, Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D, J. Mol. Biol., 333, 817, 10.1016/S0022-2836(03)00881-7
Zhou, 2004, Kinetic studies of Thermobifida fusca Cel9A active site mutant enzymes, Biochemistry, 43, 9655, 10.1021/bi049394n
Li, 2007, Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A, Appl. Environ. Microbiol., 73, 3165, 10.1128/AEM.02960-06
Percival Zhang, 2006, Outlook for cellulose improvement: screening and selection strategies, Biotechnol. Adv., 24, 452, 10.1016/j.biotechadv.2006.03.003
Chandra, 2007, Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?, Adv. Biochem. Eng. Biotechnol., 108, 67
Sørbotten, 2005, Degradation of chitosans with chitinase B from Serratia marcescens; production of chito-oligosaccharides and insight into enzyme processivity, FEBS J., 272, 538, 10.1111/j.1742-4658.2004.04495.x
Sikorski, 2006, Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan, Biochemistry, 45, 9566, 10.1021/bi060370l
Van Aalten, 2001, Structural insights into the catalytic mechanism of a family 18 exo-chitinase, Proc. Natl. Acad. Sci. U. S. A., 98, 8979, 10.1073/pnas.151103798
Tews, 1997, Substrate-assisted catalysis unifies two families of chitinolytic enzymes, J. Am. Chem. Soc., 119, 7954, 10.1021/ja970674i
Van Aalten, 2000, Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9Å resolution, Proc. Natl. Acad. Sci. U. S. A., 97, 5842, 10.1073/pnas.97.11.5842
Sakon, 1997, Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca, Nat. Struct. Biol., 4, 810, 10.1038/nsb1097-810
Perrakis, 1994, Crystal structure of a bacterial chitinase at 2.3Å resolution, Structure, 2, 1169, 10.1016/S0969-2126(94)00119-7