Towards new concepts for a biological neuroscience of consciousness

Cognitive Neurodynamics - Tập 15 - Trang 783-804 - 2021
Camilo Miguel Signorelli1,2,3, Daniel Meling4
1Department of Computer Science, University of Oxford, Oxford, UK
2Cognitive Neuroimaging Unit, INSERM U992, NeuroSpin, Gif-sur-Yvette, France
3Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
4Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland

Tóm tắt

In the search for a sound model of consciousness, we aim at introducing new concepts: closure, compositionality, biobranes and autobranes. This is important to overcome reductionism and to bring life back into the neuroscience of consciousness. Using these definitions, we conjecture that consciousness co-arises with the non-trivial composition of biological closure in the form of biobranes and autobranes: conscious processes generate closed activity at various levels and are, in turn, themselves, supported by biobranes and autobranes. This approach leads to a non-reductionist biological and simultaneously phenomenological theory of conscious experience, giving new perspectives for a science of consciousness. Future works will implement experimental definitions and computational simulations to characterize these dynamical biobranes interacting.

Tài liệu tham khảo

Allen M, Frank D, Samuel Schwarzkopf D, Fardo F, Winston JS, Hauser TU, Rees G (2016) Unexpected arousal modulates the influence of sensory noise on confidence. eLife, https://doi.org/10.7554/eLife.18103 Arslan S, Ktena SI, Makropoulos A, Robinson EC, Rueckert D, Parisot S (2018) Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 170:5–30. https://doi.org/10.1016/j.neuroimage.2017.04.014 Aru J, Bachmann T, Singer W, Melloni L (2012) Distilling the neural correlates of consciousness. Neurosci Biobehav Rev 36:737–746. https://doi.org/10.1016/j.neubiorev.2011.12.003 Ashby WR (1957) An introduction to cybernetics, second edn. Chapman and Hall, London. https://doi.org/10.5962/bhl.title.5851 Atasoy S, Donnelly I, Pearson J (2016) Human brain networks function in connectome-specific harmonic waves. Nat Commun 7:10340. https://doi.org/10.1038/ncomms10340 Atasoy S, Deco G, Kringelbach ML, Pearson J (2017) Harmonic brain modes: a unifying framework for linking space and time in brain dynamics. Neurosci. https://doi.org/10.1177/1073858417728032 Atmanspacher H, Rotter S (2008) Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2:297–318. https://doi.org/10.1007/s11571-008-9067-8 Bachmann T, Hudetz AG (2014) It is time to combine the two main traditions in the research on the neural correlates of consciousness: C=LxD. Frontiers Psychol 5:1–13. https://doi.org/10.3389/fpsyg.2014.00940 Baria AT, Maniscalco B, He BJ (2017) Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception. PLoS Comput Biol 13:1–29. https://doi.org/10.1371/journal.pcbi.1005806 Bartsch RP, Liu KK, Bashan A, Ivanov PC (2015) Network physiology: how organ systems dynamically interact. PLoS ONE 10:1–36. https://doi.org/10.1371/journal.pone.0142143 Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S (2015) Signature of consciousness in the dynamics of resting-state brain activity. Proc Nat Academy Sci. https://doi.org/10.1073/pnas.1418031112 Bashan A, Bartsch RP, Kantelhardt JW, Havlin S, Ivanov PC (2012) Network physiology reveals relations between network topology and physiological function. Nat Commun 3:702–709. https://doi.org/10.1038/ncomms1705 Basti A, Nili H, Hauk O, Marzetti L, Henson RN (2020) Multi-dimensional connectivity: a conceptual and mathematical review. NeuroImage. https://doi.org/10.1016/j.neuroimage.2020.117179 Bayne T, Hohwy J, Owen AM (2016) Are there levels of consciousness? Trends Cognitive Sci 20:405–413. https://doi.org/10.1016/j.tics.2016.03.009 Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on Astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. https://doi.org/10.1016/j.cmet.2011.08.016 Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. https://doi.org/10.1002/mrm.1910340409 Block N (2005) Two neural correlates of consciousness. Trends Cognitive Sci 9:46–52. https://doi.org/10.1016/j.tics.2004.12.006 Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G (2017) Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J Neurosci 37:9603–9613. https://doi.org/10.1523/JNEUROSCI.3218-16.2017 Box GE (1976) Science and statistics. J American Statist Assoc 71:791–799. https://doi.org/10.1080/01621459.1976.10480949 Breakspear M (2017) Dynamic models of large-scale brain activity. Nat Neurosci 20:340–352. https://doi.org/10.1038/nn.4497 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92:1087–1187. https://doi.org/10.1152/physrev.00032.2011 Canet J, Raeder J, Rasmussen LS, Enlund M, Kuipers HM, Hanning CD, Jolles J, Korttila K, Siersma VD, Dodds C, Abildstrom H, Sneyd JR, Vila P, Johnson T, Muñoz Corsini L, Silverstein JH, Nielsen IK, Moller JT (2003) Cognitive dysfunction after minor surgery in the elderly. Acta Anaesthesiol Scand 47:1204–1210. https://doi.org/10.1046/j.1399-6576.2003.00238.x Cabral J, Kringelbach ML, Deco G (2017) Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms. NeuroImage 160:84–96. https://doi.org/10.1016/j.neuroimage.2017.03.045 Cárdenas LM, Letelier JC, Gutierrez C, Cornish-Bowden A, Soto-Andrade J (2010) Closure to efficient causation, computability and artificial life. J Theor Biol 263:79–92. https://doi.org/10.1016/j.jtbi.2009.11.010 Chalmers D (1995) The puzzle of conscious experience. Sci Am 273:80–86 Chander D, García PS, MacColl JN, Illing S, Sleigh JW (2014) Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS ONE. https://doi.org/10.1371/journal.pone.0106291 Cleeremans A (2011) The Radical Plasticity Thesis: How the Brain Learns to be Conscious. Front psychol 2:86. https://doi.org/10.3389/fpsyg.2011.00086 Coecke B (ed) (2011) New Structures for Physics. lectures n ed.; Vol. 813, Lecture Notes in Physics, Springer. Springer, Berlin, Heidelberg, p 1034 Coecke B, Duncan R, Kissinger A, Wang Q (2016) Generalised Compositional Theories and Diagrammatic Reasoning. In Quantum Theory: Informational Foundations and Foils. Fundamental Theories of Physics.; Chiribella, G.; Spekkens, R., Eds.; Springer, Vol. 181, pp. 309–366, [arXiv:1506.03632]. https://doi.org/10.1007/978-94-017-7303-4_10 Corazzol M, Lio G, Lefevre A, Deiana G, Tell L, André-obadia N, Bourdillon P, Guenot M, Desmurget M, Luauté J, Sirigu A (2017) Restoring consciousness with vagus nerve stimulation. Curr Biol 27:R994–R996. https://doi.org/10.1016/j.cub.2017.07.060 Critchley HD, Wiens S, Rotshtein P, Öhman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195. https://doi.org/10.1038/nn1176 Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biolo. https://doi.org/10.1371/journal.pcbi.1000092 Deco G, Jirsa V, McIntosh A, Sporns O, Kotter R (2009) Key role of coupling, delay, and noise in resting brain fluctuations. Proc Nat Acad Sci 106:12207–12208. https://doi.org/10.1073/pnas.0906701106 DeFelipe J (2011) The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat 5:1–17. https://doi.org/10.3389/fnana.2011.00029 Dehaene S, Changeux JP (2005) Ongoing spontaneous activity controls access to consciousness: a neuronal model for inattentional blindness. PLoS Biol 3:0910–0927. https://doi.org/10.1371/journal.pbio.0030141 Dehaene S, Changeux JP (2011) Experimental and theoretical approaches to conscious processing. Neuron 70:200–27. https://doi.org/10.1016/j.neuron.2011.03.018 Demertzi A, Tagliazucchi E, Dehaene S, Deco G, Barttfeld P, Raimondo F, Martial C, Fernández-Espejo D, Rohaut B, Voss HU, Schiff ND, Owen AM, Laureys S, Naccache L, Sitt JD (2019) Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci Adv 5:1–11. https://doi.org/10.1126/sciadv.aat7603 Di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, Charland-Verville V, Wannez S, Gomez F, Hustinx R, Tshibanda L, Demertzi A, Soddu A, Laureys S (2016) Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. Lancet Neurol 15:830–842. https://doi.org/10.1016/S1474-4422(16)00111-3 Daugman JG (2001) Brain metaphor and brain theory. In Philosophy and the Neurosciences: A Reader; William P. Bechtel, Pete Mandik, J.M.&.R.S.S., Ed.; Blackwell Dehaene S, Charles L, King JR, Marti S (2014) Toward a computational theory of conscious processing. Curr Opin Neurobiol 25:76–84. https://doi.org/10.1016/j.conb.2013.12.005 Dehaene S, Lau H, Kouider S (2017) What is consciousness, and could machines have it? Science 358:484–489. https://doi.org/10.1126/science.aan8871 Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303. https://doi.org/10.1037/h0023240 Fernández N, Maldonado C, Gershenson C (2014) Information Measures of Complexity, Emergence, Self-organization, Homeostasis, and Autopoiesis. Guided Self-Organization: Inception. Emergence, Complexity and Computation; Prokopenko, M., Ed. Springer Berlin Heidelber, pp. 19–51, [arXiv:1304.1842]. https://doi.org/10.1007/978-3-642-53734-9_2 Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences, 102:9673–9678, [arXiv:NIHMS150003]. https://doi.org/10.1073/pnas.0504136102 Fransson P (2006) How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 44:2836–2845. https://doi.org/10.1016/j.neuropsychologia.2006.06.017 Gershenson C (2013a) Facing complexity: prediction vs adaptation. Underst Complex Sys. https://doi.org/10.1007/978-3-642-32817-6-2 Gershenson C (2013b) The Implications of Interactions for Science and Philosophy. Foundations of Science, 18:781–790, [arXiv:1105.2827]. https://doi.org/10.1007/s10699-012-9305-8 Gershenson C (2015) Requisite variety, autopoiesis, and self-organization. Kybernetes 44:866–873. Gödel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38:173–198. https://doi.org/10.1007/BF01700692 Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computat Biol. https://doi.org/10.1371/journal.pcbi.1000196 Guy J, Staiger JF (2017) The functioning of a cortex without layers. Front Neuroanatomy 11:1–13. https://doi.org/10.3389/fnana.2017.00054 Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031. https://doi.org/10.1152/physrev.00049.2005 Huber L, Finn ES, Chai Y, Goebel R, Stirnberg R, Stöcker T, Marrett S, Uludag K, Kim SG, Han SH, Bandettini PA, Poser BA (2020) Layer-dependent functional connectivity methods. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2020.101835 Herzog MH, Kammer T, Scharnowski F (2016) Time slices: what is the duration of a percept? PLoS Biol 14:e1002433. https://doi.org/10.1371/journal.pbio.1002433 Ivanov P, Liu K, Lin A, Bartsch R (2017) Network Physiology: From Neural Plasticity to Organ Network Interactions. In Emergent Complexity from Nonlinearity, in Physics, Engineering and the Life Sciences, Springer P ed.; Mantica, G.; Stoop, R.; Stramaglia, S., Eds.; Springer: Cham, (pp. 145–165) Jha MK, Morrison BM (2018) Glia-neuron energy metabolism in health and diseases: new insights into the role of nervous system metabolic transporters. Exp Neurol 309:23–31. https://doi.org/10.1016/j.expneurol.2018.07.009 Kleiner J (2019) On empirical well-definedness of models of consciousness. PsyArXiv 1–6. https://doi.org/10.31234/osf.io/jdcfh Koubeissi MZ, Bartolomei F, Beltagy A, Picard F (2014) Electrical stimulation of a small brain area reversibly disrupts consciousness. Epilepsy Behav 37:32–35. https://doi.org/10.1016/j.yebeh.2014.05.027 Kringelbach ML, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris R, Whybrow PC, Logothetis NK, Deco G (2020) Dynamic coupling of whole-brain neuronal and neurotransmitter systems. Proc Nat Acad Sci USA 117:9566–9576. https://doi.org/10.1073/pnas.1921475117 Laumann TO, Snyder AZ, Mitra A, Gordon EM, Gratton C, Adeyemo B, Gilmore AW, Nelson SM, Berg JJ, Greene DJ, McCarthy JE, Tagliazucchi E, Laufs H, Schlaggar BL, Dosenbach NU, Petersen SE (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732. https://doi.org/10.1093/cercor/bhw265 Lee U, Müller M, Noh GJ, Choi B, Mashour GA (2011) Dissociable network properties of anesthetic state transitions. Anesthesiology 114:872–881. https://doi.org/10.1097/ALN.0b013e31821102c9 Lepousé C, Lautner CA, Liu L, Gomis P, Leon A (2006) Emergence delirium in adults in the post-anaesthesia care unit. Br J Anaesth 96:747–753. https://doi.org/10.1093/bja/ael094 Letelier JC, Soto-Andrade J, Guíñez Abarzúa F, Cornish-Bowden A, Luz Cárdenas M (2006) Organizational invariance and metabolic closure: analysis in terms of (M, R) systems. J Theor Biol 238:949–961. https://doi.org/10.1016/j.jtbi.2005.07.007 Letelier JC, Cárdenas ML, Cornish-Bowden A (2011) From l’homme machine to metabolic closure: steps towards understanding life. J Theor Biol 286:100–113. https://doi.org/10.1016/j.jtbi.2011.06.033 Llinás R (2003) Consciousness and the thalamocortical loop. Int Congr Ser 1250:409–416. https://doi.org/10.1016/S0531-5131(03)01067-7 Llinás RR, Paré D (1991) Of dreaming and wakefulness. Neuroscience 44:521–535. https://doi.org/10.1016/0306-4522(91)90075-Y López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Physics Letters A, 209, 321–326, [arXiv:nlin/0205033]. https://doi.org/10.1016/0375-9601(95)00867-5 LopezspsRuiz1995 López-Ruiz R, Mancini HL, Calbet X (1995) A statistical measure of complexity. Physics Letters A, 209, 321–326, [arXiv:nlin/0205033]. https://doi.org/10.1016/0375-9601(95)00867-5 LoTurco J, Booker A (2013) Neuronal Migration Disorders. Cellular Migration and Formation of Neuronal Connections. https://doi.org/10.1016/B978-0-12-397266-8.00038-7 Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901. https://doi.org/10.1016/j.neuron.2015.03.035 Mashour GA, Roelfsema P, Changeux JP, Dehaene S (2020) Conscious processing and the global neuronal workspace hypothesis. Neuron 105:776–798. https://doi.org/10.1016/j.neuron.2020.01.026 Maturana HR (2011) Ultrastability autopoiesis? Reflective response to tom froese and john stewart. Cybernetics and Human Knowing 18:143–152 Maturana H, Varela F (1998) De máquinas y seres vivos, quinta edn. Editorial Universitaria S.A, Santiago de Chile, p 136 Mazzocchi F (2008) Complexity in biology. EMBO Rep 9:10–14 McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. The Bulletin Mathemat Biophys 5:115–133. https://doi.org/10.1007/BF02478259 Merleau-Ponty M (2005) Phenomenology of perception. Routledge, London Miłkowski M (2018) From computer metaphor to computational modeling: the evolution of computationalism. Mind Mach 28:515–541. https://doi.org/10.1007/s11023-018-9468-3 Moore GW (2005) What is a brane? Notices American Math Soc 52:214–215 Nagel Thomas (1974) What is it like to be a bat? Philos Rev 83:435–450 Nguyen VT, Breakspear M, Hu X, Guo CC (2016) The integration of the internal and external milieu in the insula during dynamic emotional experiences. NeuroImage 124:455–463. https://doi.org/10.1016/j.neuroimage.2015.08.078 Nowogrodzki A (2018) The strongest scanners. Nature 563:24–26 O’Connor CM, Adams JU (2010) Essentials of Cell Biology. NPG Education, Cambridge, MA Oizumi M, Albantakis L, Tononi G (2014) From the phenomenology to the mechanisms of consciousness: Integrated Information Theory 30 PLoS computational biology https://doi.org/10.1371/journal.pcbi.1003588 Park HD, Tallon-Baudry C (2014) The neural subjective frame: from bodily signals to perceptual consciousness. Philosop Transac Royal Soc B Biol Sci. https://doi.org/10.1098/rstb.2013.0208 Park HD, Correia S, Ducorps A, Tallon-Baudry C (2014) Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat Neurosci 17:612–618. https://doi.org/10.1038/nn.3671 Perouansky M, Maciver MB, Pearce RA (2019) Wake up, neurons!. Astrocytes Calling. Anesthesiology 130:361–363. https://doi.org/10.1097/ALN.0000000000002589 Petit JM, Magistretti PJ (2016) Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323:135–156. https://doi.org/10.1016/j.neuroscience.2015.12.007 Petitmengin C, Remillieux A, Valenzuela-Moguillansky C (2019) Discovering the structures of lived experience. Phenomenol Cognit Sci 18:691–730. https://doi.org/10.1007/s11097-018-9597-4 Pessoa L (2014) Understanding brain networks and brain organization. Physics of Life Reviews, 11:400–435, [arXiv:1403.7151]. https://doi.org/10.1016/j.plrev.2014.03.005 Piccinini G (2004) The first computational theory of mind and brain: a close look at McCulloch and Pitts’s logical calculus of ideas immanent in nervous activity. Synthese 141:175–215. https://doi.org/10.1023/B:SYNT.0000043018.52445.3e Prentner R (2017) Consciousness: a molecular perspective. Philosophies 2:26. https://doi.org/10.3390/philosophies2040026 Ramadasan-Nair R, Hui J, Itsara LS, Morgan PG, Sedensky MM (2019) Mitochondrial function in astrocytes is essential for normal emergence from anesthesia in mice. Anesthesiology 130:423–434. https://doi.org/10.1097/ALN.0000000000002528 Rescher N Process Philosophy Rodríguez E (2008) Ideas para naturalizar el estudio de la conciencia. In Ciencias de la mente: aproximaciones desde Latinoamerica; Edmundo Kronmüller.; Cornejo, C., Eds.; Juan Carlos Sáez Editor, pp. 301–324 Ruiz-Mirazo K, Moreno A (2004) Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10:235–259. https://doi.org/10.1162/1064546041255584 Schiff ND (2010) Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 33:1–9. https://doi.org/10.1016/j.tins.2009.11.002 Schiff ND (2013) Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state. In Handbook of Clinical Neurology; Lozano, A.; Hallett, M., Eds.; Elsevier B.V., Vol. 116, chapter 24, pp. 295–306. https://doi.org/10.1016/B978-0-444-53497-2.00024-3 Searle JR (2000) Consciousness. Annu Rev Neurosci 23:557–578. https://doi.org/10.1146/annurev.neuro.23.1.557 Seth AK (2013) Interoceptive inference, emotion, and the embodied self. Trends Cognit Sci 17:565–573. https://doi.org/10.1016/j.tics.2013.09.007 Seth AK (2018) Consciousness: the last 50 years (and the next). Brain Neurosci Adv 2:239821281881601. https://doi.org/10.1177/2398212818816019 Shea N, Frith CD (2016) Dual-process theories and consciousness: the case for ‘Type Zero’ cognition. Neuroscience of Consciousness 2016:1–10. https://doi.org/10.1093/nc/niw005 Shulman RG, Hyder F, Rothman DL (2009) Baseline brain energy supports the state of consciousness. PNAS, 106. https://doi.org/10.1073/pnas.0903941106 Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi G (2017) The neural correlates of dreaming. Nat Neurosci 20:872–878. https://doi.org/10.1038/nn.4545 Signorelli CM (2018a) Can Computers Overcome Humans? Consciousness Interaction and its Implications. Proceedings of 2018 IEEE 17th International Conference on Cognitive Informatics and Cognitive Computing, ICCI*CC 2018. IEEE, pp. 61–69, [arXiv:1706.02274]. https://doi.org/10.1109/ICCI-CC.2018.8482038 Signorelli CM (2018b) Can computers become conscious and overcome humans? Front Robot Artif Intell. https://doi.org/10.3389/frobt.2018.00121 Signorelli CM, Joaquin Diaz B (2021) Multilayer networks as embodied consciousness interactions. A formal model approach. (Work in progress) Signorelli CM, Wang Q, Khan I (2020a) A Compositional model of Consciousness based on Consciousness-only. [arXiv:2007.16138v2] Signorelli CM, Dundar-Coecke S, Wang V, Coecke B (2020b) Cognitive structures of space-time. Front Psychol 11:527114. https://doi.org/10.3389/fpsyg.2020.527114 Signorelli CM, Diaz Boils J, Tagliazucchi E, Jarraya B, Deco G (2021) From brain-body function to consciousness interaction. (work in progress) Suzuki M, Larkum ME (2020) General anesthesia decouples cortical pyramidal neurons. Cell 180(666–676):e13. https://doi.org/10.1016/j.cell.2020.01.024 Simon CW, Emmons WH (1956) EEG, consciousness, and sleep. Science 124:1066–1069. https://doi.org/10.1126/science.124.3231.1066 Stankovski T, Petkoski S, Raeder J, Smith AF, McClintock PV, Stefanovska A (2016) Alterations in the coupling functions between cortical and cardio-respiratory oscillations due to anaesthesia with propofol and sevoflurane. Philosophical Transac Royal Soc A Math Phys Eng. https://doi.org/10.1098/rsta.2015.0186 Stender J, Mortensen KN, Thibaut A, Darkner S, Laureys S, Gjedde A, Kupers R (2016) The minimal energetic requirement of sustained awareness after brain injury. Curr Biol 26:1494–1499. https://doi.org/10.1016/j.cub.2016.04.024 Stern P (2017) Neuroscience: In search of new concepts. Science 358:464–465. https://doi.org/10.1126/science.358.6362.464 Storm JF, Boly M, Casali AG, Massimini M, Olcese U, Pennartz CM, Wilke M (2017) Consciousness regained: disentangling mechanisms, brain systems, and behavioral responses. J Neurosci 37:10882–10893. https://doi.org/10.1523/jneurosci.1838-17.2017 Tagliazucchi E (2017) The signatures of conscious access and its phenomenology are consistent with large-scale brain communication at criticality. Conscious Cogn 55:136–147. https://doi.org/10.1016/j.concog.2017.08.008 Thompson E (2004) Life and mind: from autopoiesis to neurophenomenology a tribute to francisco varela. Phenomenol Cognitive Sci 3:381–398 Thompson E (2007) Mind in Life. Harvard University Press, Cambridge Thompson E (2014) Waking, Dreaming, Being. Columbia University Press, New York, p 496 Tononi G, Koch C (2015) Consciousness: here, there and everywhere? Philosop Transac Royal Soc London B Biol Sci. https://doi.org/10.1098/rstb.2014.0167 Thompson E, Varela F (2001) Radical embodiment: neural dynamics and consciousness. Trends cognit sci 5:418–425 Tononi G, Boly M, Massimini M, Koch C (2016) Integrated information theory: from consciousness to its physical substrate. Nat Rev Neurosci 17:450–61. https://doi.org/10.1038/nrn.2016.44 Tsuchiya N, Wilke M, Frässle S, Lamme VA (2015) No-report paradigms: extracting the true neural correlates of consciousness. Trends Cognitive Sci 19:757–770. https://doi.org/10.1016/j.tics.2015.10.002 Uhrig L, Sitt JD, Jacob A, Tasserie J, Barttfeld P, Dupont M, Dehaene S, Jarraya B (2018) Resting-state dynamics as a cortical signature of anesthesia in monkeys. Anesthesiology 129:942–958. https://doi.org/10.1097/aln.0000000000002336 Van Vugt B, Dagnino B, Vartak D, Safaai H, Panzeri S, Dehaene S, Roelfsema PR (2018) The threshold for conscious report: signal loss and response bias in visual and frontal cortex. Science 360:537–542. https://doi.org/10.1126/science.aar7186 Varela F (1979) Principles of Biological Autonomy. Elsevier North Holland, New York, p 306 Varela FJ (1991) Organism: A Meshwork of Selfless Selves. In Organism and the Origins of Self; Tauber AI, (Ed); Springer: Dordrecht, pp. 79–107. Varela FJ (1996) Neurophenomenology: a methodological remedy for the hard problem. J Conscious Stud 3:330–349 Varela FJ (1997) Patterns of life intertwining identity and cognition. Brain Cogn 87:72–87 Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. BioSystems 5:187–196 Velazquez JLP (2020) On the emergence of cognition: from catalytic closure to neuroglial closure. J Biol Phys. https://doi.org/10.1007/s10867-020-09543-8 von Neumann J (1958) The Computer and the Brain. Yale University Press, New Haven Warnaby CE, Sleigh JW, Hight D, Jbabdi S, Tracey I (2017) Investigation of slow-wave activity saturation during surgical anesthesia reveals a signature of neural inertia in humans. Anesthesiology 127:645–657. https://doi.org/10.1097/ALN.0000000000001759 Werner G (2012) From brain states to mental phenomena via phase space transitions and renormalization group transformation: Proposal of a theory. Cogn Neurodyn 6:199–202. https://doi.org/10.1007/s11571-011-9187-4 Werner G (2013) Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group. Chaos, Solitons Fractals 55:3–12. https://doi.org/10.1016/j.chaos.2012.03.014 Wiener N (1985) Cybernetics: or control and communication in the animal and the machine, second ed.; The MIT Press, p. 231 Zeeman EC (1976) Catastrophe theory. Sci Am 234:65–83 Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, Fan M, Zhou Z, Zhang Y, Wang A, Chen L, Cheng H (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14:713–719. https://doi.org/10.1038/nmeth.4305