Towards nanoscale fault-tolerant logical circuits using proposed robust majority voter in quantum-dot cellular automata technology
Tài liệu tham khảo
Ahmadpour, 2023, An efficient design of multiplier for using in nano-scale IoT systems using atomic silicon, IEEE Internet Things J., 10.1109/JIOT.2023.3267165
Ahmadpour, 2019, New designs of fault-tolerant adders in quantum-dot cellular automata, Nano Commun. Netw., 19, 10, 10.1016/j.nancom.2018.11.001
Das, 2023, Design of multiplier circuit using carry save adder based on quantum-dot cell automata, Nano, 18, 10.1142/S1793292023500303
Seyedi, 2018, Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata, Nano Commun. Netw., 16, 1, 10.1016/j.nancom.2018.02.002
Seyedi, 2022, A new coplanar design of a 4-bit ripple carry adder based on quantum-dot cellular automata technology, IET Circuits Devices Syst., 16, 64, 10.1049/cds2.12083
Seyedi, 2022, A fault-tolerant image processor for executing the morphology operations based on a nanoscale technology, Multimedia Tools Appl., 1
Debnath, 2021, Cryptographic models of nanocommunicaton network using quantum dot cellular automata: A survey, IET Quantum Commun., 2, 98, 10.1049/qtc2.12013
Seyedi, 2022, An efficient structure for designing a nano-scale fault-tolerant 2: 1 multiplexer based on quantum-dot cellular automata, Optik, 251, 10.1016/j.ijleo.2021.168409
Seyedi, 2021, A new cost-efficient design of a reversible gate based on a nano-scale quantum-dot cellular automata technology, Electronics, 10, 1806, 10.3390/electronics10151806
Seyedi, 2021, Designing a new 4: 2 compressor using an efficient multi-layer full-adder based on nanoscale quantum-dot cellular automata, Internat. J. Theoret. Phys., 60, 2613, 10.1007/s10773-021-04734-y
Ahmadpour, 2020, The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate, J. Supercomput., 76, 10155, 10.1007/s11227-020-03249-3
J.C. Das, et al., Single Layer Design of Dual Banyan Network Using Quantum-Dot Cellular Automata, in: 2023 IEEE Devices for Integrated Circuit, DevIC 2023, IEEE.
Kundu, 2022, Digital signature technique with quantum-dot cellular automata, IET Quantum Commun., 3, 164, 10.1049/qtc2.12041
Das, 2019, Directed acyclic graph-based design of digital logic circuits using QCA, J. Comput. Electron., 18, 988, 10.1007/s10825-019-01341-3
Ahmadpour, 2020, A novel ultra-dense and low-power structure for fault-tolerant three-input majority gate in QCA technology, Concurr. Comput.: Pract. Exper., 32, 5548, 10.1002/cpe.5548
Das, 2023, Nano-scale design of full adder and full subtractor using reversible logic based decoder circuit in quantum-dot cellular automata, Int. J. Numer. Modelling, Electron. Netw. Devices Fields, 10.1002/jnm.3092
Kumar, 2016, Design of a practical fault-tolerant adder in QCA, Microelectron. J., 53, 90, 10.1016/j.mejo.2016.04.004
Lent, 1993, Quantum cellular automata, Nanotechnology, 4, 49, 10.1088/0957-4484/4/1/004
Singh, 2018, Fault-tolerant design and analysis of QCA-based circuits, IET Circuits Devices Syst., 12, 638, 10.1049/iet-cds.2017.0505
Seyedi, 2021, Design and analysis of fault-tolerant 1: 2 demultiplexer using quantum-dot cellular automata nano-technology, Electronics, 10, 2565, 10.3390/electronics10212565
Seyedi, 2021, A fault-tolerance nanoscale design for binary-to-gray converter based on QCA, IETE J. Res., 1
Ahmadpour, 2019, Robust QCA full-adders using an efficient fault-tolerant five-input majority gate, Int. J. Circuit Theory Appl., 47, 1037, 10.1002/cta.2634
Seyedi, 2019, Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology, Optik, 185, 827, 10.1016/j.ijleo.2019.03.029
Seyedi, 2022, Designing a multi-layer full-adder using a new three-input majority gate based on quantum computing, Concurr. Comput.: Pract. Exper., 34, 10.1002/cpe.6653
Roohi, 2015, Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder, Microelectron. J., 46, 531, 10.1016/j.mejo.2015.03.023
Pulimeno, 2013, Bis-ferrocene molecular QCA wire: Ab initio simulations of fabrication driven fault tolerance, IEEE Trans. Nanotechnol., 12, 498, 10.1109/TNANO.2013.2261824
Navimipour, 2023, A nano-scale arithmetic and logic unit using a reversible logic and quantum-dots, J. Supercomput., 1
Seyedi, 2021, Designing a three-level full-adder based on nano-scale quantum dot cellular automata, Photonic Netw. Commun., 42, 184, 10.1007/s11107-021-00949-5
Farazkish, 2018, Novel efficient fault-tolerant full-adder for quantum-dot cellular automata, Int. J. Nano Dimens., 9, 58
Wilson, 2002
Kumar, 2016, Design of a practical fault-tolerant adder in QCA, Microelectron. J., 53, 90, 10.1016/j.mejo.2016.04.004
Farazkish, 2014, A new quantum-dot cellular automata fault-tolerant five-input majority gate, J. Nanoparticle Res., 16, 10.1007/s11051-014-2259-8
Huang, 2007, On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire, J. Electron. Test., 23, 163, 10.1007/s10836-006-0548-6
B. Sen, et al., Efficient design of fault tolerant tiles in QCA, in: 2014 Annual IEEE India Conference, INDICON 2014.
Sen, 2016, On the reliability of majority logic structure in quantum-dot cellular automata, Microelectron. J., 47, 7, 10.1016/j.mejo.2015.11.002
Ahmadpour, 2018, A novel fault-tolerant multiplexer in quantum-dot cellular automata technology, J. Supercomput., 74, 4696, 10.1007/s11227-018-2464-9
Huakun, 2016, Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata, J. Comput. Electron., 15
Seyedi, 2022, An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantum-dot cellular automata, Optik, 251, 10.1016/j.ijleo.2021.168409
Das, 2010
Hosseinzadeh, 2018, A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification, Microelectron. Eng., 192, 52, 10.1016/j.mee.2018.01.019
Singh, 2018, Fault-tolerant design and analysis of QCA-based circuits, IET Circuits Devices Syst., 12, 638, 10.1049/iet-cds.2017.0505
Kumar, 2017, On fault-tolerant design of exclusive-OR gates in QCA, J. Comput. Electron., 16, 896, 10.1007/s10825-017-1022-7
Moghimizadeh, 2019, A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification, J. Supercomput., 75, 5688, 10.1007/s11227-019-02812-x
Wang, 2018, Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata, J. Semicond., 39, 10.1088/1674-4926/39/8/085001
K. Pandiammal, D. Meganathan, Design of 8 bit Reconfigurable ALU Using Quantum Dot Cellular Automata, in: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, NMDC 2018.
Ahmadpour, 2018, A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR, Physica B, 550, 383, 10.1016/j.physb.2018.09.029
Han, 2011, On the reliability of computational structures using majority logic, IEEE Trans. Nanotechnol., 10, 1099, 10.1109/TNANO.2011.2111460
Oskouei, 2019, Designing a new reversible ALU by QCA for reducing occupation area, J. Supercomput., 75, 5118, 10.1007/s11227-019-02788-8
Valinataj, 2017, Novel parity-preserving reversible logic array multipliers, J. Supercomput., 73, 4843, 10.1007/s11227-017-2057-z
Jayashree, 2016, Ancilla-input and garbage-output optimized design of a reversible quantum integer multiplier, J. Supercomput., 72, 1477, 10.1007/s11227-016-1676-0
Kotiyal, 2015, Reversible logic based multiplication computing unit using binary tree data structure, J. Supercomput., 71, 2668, 10.1007/s11227-015-1410-3
Heikalabad, 2018, A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis, J. Supercomput., 74, 1994, 10.1007/s11227-017-2206-4
Abedi, 2015, Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover, IEEE Trans. Nanotechnol., 14, 497, 10.1109/TNANO.2015.2409117
Z. Rumi, et al., Performance comparison of quantum-dot cellular automata adders, in: 2005 IEEE International Symposium on Circuits and Systems, ISCAS 2005.
Walus, 2004, QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol., 3, 26, 10.1109/TNANO.2003.820815
Sun, 2018, The fundamental primitives with fault-tolerance in quantum-dot cellular automata, J. Electron. Test., 34, 109, 10.1007/s10836-018-5723-z
H.P.B. Adiga, R. Jayagowri, Application of Quantum Cellular Automata in Image Steganography with an Improved Fault Tolerant Majority Voter, in: 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology, RTEICT 2018.
Riki, 2022, Research paper a robust single layer QCA decoder using a novel fault tolerant three input majority gate, J. Optoelectron. Nanostruct., 7, 23
Mustafa, 2013, Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count, Indian J. Pure Appl. Phys., 51, 60
Niemier, 2000
V.C. Teja, S. Polisetti, S. Kasavajjala, QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing, in: 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2008.