Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials

Chemical Society Reviews - Tập 45 Số 5 - Trang 1273-1307
Ming Zhou1,2,3,4,5, Hsing‐Lin Wang6,7,8,9, Shaojun Guo10,11,12,5,13
1Changchun
2Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries
3Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, and National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun, Jilin Province 130024, P. R. China
4Northeast Normal University
5P. R. China
6Chemistry Division
7Los Alamos
8Los Alamos National Laboratory
9Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
10Beijing 100871
11College of Engineering
12Department of Materials Science and Engineering & Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
13Peking University

Tóm tắt

We summarize and discuss recent developments of different-dimensional advanced carbon nanomaterial-based noble-metal-free high-efficiency oxygen reduction electrocatalysts, including heteroatom-doped, transition metal-based nanoparticle-based, and especially iron carbide (Fe3C)-based carbon nanomaterial composites.

Từ khóa


Tài liệu tham khảo

Liu, 2015, Science, 347, 1258832, 10.1126/science.1258832

Alm, 1981, Science, 211, 1379, 10.1126/science.211.4489.1379

Norvig, 2010, Nature, 463, 26, 10.1038/463026a

Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368

Ren, 2015, Renewable Sustainable Energy Rev., 41, 225, 10.1016/j.rser.2014.08.003

Wang, 2014, Part. Part. Syst. Charact., 31, 515, 10.1002/ppsc.201300315

Chang, 2013, Energy Environ. Sci., 6, 3483, 10.1039/c3ee42518e

Li, 2014, Adv. Energy Mater., 4, 1301415, 10.1002/aenm.201301415

Guer, 2013, Chem. Rev., 113, 6179, 10.1021/cr400072b

Liu, 2014, Chem. Rev., 114, 5117, 10.1021/cr400523y

Nasef, 2014, Chem. Rev., 114, 12278, 10.1021/cr4005499

Wang, 2013, Chem. Rev., 113, 8104, 10.1021/cr300491e

Zhang, 2012, Chem. Soc. Rev., 41, 2382, 10.1039/c2cs15269j

Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d

Devanathan, 2008, Energy Environ. Sci., 1, 101, 10.1039/b808149m

Hawkes, 2009, Energy Environ. Sci., 2, 729, 10.1039/b902222h

Grove, 1838, Philos. Mag. Series 3, 13, 430

Schœnbein, 1839, Philos. Mag. Series 3, 14, 43

Warshay, 1989, J. Power Sources, 29, 193, 10.1016/0378-7753(90)80019-A

K. A. Burke , Fuel cells for space science applications, 1st International Energy Conversion Engineering Conference, 2003

R. Cohen , Gemini fuel cell system, Proc. 20th Power Sources Conf., May 1966

Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k

Zhou, 2011, Acc. Chem. Res., 44, 1232, 10.1021/ar200096g

Calabrese Barton, 2004, Chem. Rev., 104, 4867, 10.1021/cr020719k

Cracknell, 2008, Chem. Rev., 108, 2439, 10.1021/cr0680639

G. T. R. Palmore and G. M.Whitesides, Enzymatic conversion of biomass for fuels production, 1994, vol. 566, pp. 271–290

Logan, 2006, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016

Zhou, 2010, J. Am. Chem. Soc., 132, 2172, 10.1021/ja910634e

Zhou, 2012, Electroanalysis, 24, 197, 10.1002/elan.201100631

Zhou, 2010, Lab Chip, 10, 2932, 10.1039/c0lc00009d

Zhou, 2012, Angew. Chem., Int. Ed., 51, 2686, 10.1002/anie.201107068

Cui, 2013, Acc. Chem. Res., 46, 1427, 10.1021/ar300254b

Guo, 2011, Acc. Chem. Res., 44, 491, 10.1021/ar200001m

Rinaldi, 2008, Energy Environ. Sci., 1, 417, 10.1039/b806498a

Zhang, 2014, Energy Environ. Sci., 7, 2535, 10.1039/C3EE43886D

Zhong, 2008, Energy Environ. Sci., 1, 454, 10.1039/b810734n

Choi, 2012, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001

Tiwari, 2013, Nano Energy, 2, 553, 10.1016/j.nanoen.2013.06.009

Steele, 2001, Nature, 414, 345, 10.1038/35104620

Gasteiger, 2005, Appl. Catal., B, 56, 9, 10.1016/j.apcatb.2004.06.021

Chen, 2010, Chem. Rev., 110, 3767, 10.1021/cr9003902

Nie, 2015, Chem. Soc. Rev., 44, 2168, 10.1039/C4CS00484A

Guo, 2013, Angew. Chem., Int. Ed., 52, 8526, 10.1002/anie.201207186

Bing, 2010, Chem. Soc. Rev., 39, 2184, 10.1039/b912552c

Hayden, 2013, Acc. Chem. Res., 46, 1858, 10.1021/ar400001n

Porter, 2013, Acc. Chem. Res., 46, 1867, 10.1021/ar3002238

Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z

Wu, 2013, Acc. Chem. Res., 46, 1848, 10.1021/ar300359w

Chen, 2010, Chem. Rev., 110, 3767, 10.1021/cr9003902

Kakati, 2014, Chem. Rev., 114, 12397, 10.1021/cr400389f

Wang, 2011, Chem. Rev., 111, 7625, 10.1021/cr100060r

Xu, 2014, Chem. Soc. Rev., 43, 2439, 10.1039/c3cs60351b

You, 2013, Chem. Soc. Rev., 42, 2880, 10.1039/C2CS35319A

Manthiram, 2008, Energy Environ. Sci., 1, 621, 10.1039/b811802g

Zheng, 2012, Small, 8, 3550, 10.1002/smll.201200861

Zhang, 2012, Nano Energy, 1, 514, 10.1016/j.nanoen.2012.02.008

Yang, 2013, Chin. J. Catal., 34, 1986, 10.1016/S1872-2067(12)60713-X

Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9

Alonso-Vante, 2010, ChemPhysChem, 11, 2732, 10.1002/cphc.200900817

Shao, 2007, J. Power Sources, 171, 558, 10.1016/j.jpowsour.2007.07.004

K. Sasaki , M.Sao and R.Adzic, “Dissolution and Stability of Platinum in Oxygen Cathodes” in Polymer Electrolyte Fuel Cell Durability, Springer Science, New York, 2009

Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l

See the website on Fuel Cell System Cost – 2013: http://www.energy.gov/sites/prod/files/2014/03/f11/13012_fuel_cell_system_cost_2013.pdf

See the website on Fuel Cell Technical Team Roadmap: http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf

Hu, 2015, J. Mater. Chem. A, 3, 1752, 10.1039/C4TA03986F

Sasaki, 2010, Angew. Chem., Int. Ed., 49, 8602, 10.1002/anie.201004287

De Bruijn, 2008, Fuel Cells, 8, 3, 10.1002/fuce.200700053

Chen, 2015, Appl. Energy, 142, 154, 10.1016/j.apenergy.2014.12.062

Kannan, 2015, J. Power Sources, 277, 312, 10.1016/j.jpowsour.2014.11.115

Chen, 2010, J. Electrochem. Soc., 157, A82, 10.1149/1.3258275

Ferreira, 2005, J. Electrochem. Soc., 152, A2256, 10.1149/1.2050347

Debe, 2006, J. Power Sources, 161, 1002, 10.1016/j.jpowsour.2006.05.033

Acres, 2001, J. Power Sources, 100, 60, 10.1016/S0378-7753(01)00883-7

C. Morrill , Apollo fuel cell System, Proceedings of the, 19th, Power Sources Conference, Atlantic City, NJ, 1965

E. M. Cortright , Apollo Expeditions to the Moon: The NASA History, Courier Corporation, 2012

G. Hoogers , Fuel cell technology handbook, CRC press, 2014

Guo, 2013, Angew. Chem., Int. Ed., 52, 3465, 10.1002/anie.201209871

Guo, 2012, J. Am. Chem. Soc., 134, 2492, 10.1021/ja2104334

Guo, 2013, J. Am. Chem. Soc., 135, 13879, 10.1021/ja406091p

Zhang, 2014, J. Am. Chem. Soc., 136, 7734, 10.1021/ja5030172

Zhao, 2014, J. Am. Chem. Soc., 136, 7551, 10.1021/ja502532y

Liang, 2012, J. Am. Chem. Soc., 134, 15849, 10.1021/ja305623m

Sun, 2015, ACS Catal., 5, 1857, 10.1021/cs502029h

Zhang, 2013, J. Mater. Chem. A, 1, 11457, 10.1039/c3ta12067h

Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923

Liang, 2012, J. Am. Chem. Soc., 134, 3517, 10.1021/ja210924t

Guo, 2012, Angew. Chem., Int. Ed., 51, 11770, 10.1002/anie.201206152

Wang, 2011, Angew. Chem., Int. Ed., 50, 10969, 10.1002/anie.201104004

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Xia, 2015, Energy Environ. Sci., 8, 568, 10.1039/C4EE02281E

Ci, 2015, J. Mater. Chem. A, 3, 7986, 10.1039/C5TA00894H

Zhu, 2013, Nano Lett., 13, 2947, 10.1021/nl401325u

Gao, 2015, Nano Energy, 13, 518, 10.1016/j.nanoen.2015.02.031

Gao, 2013, J. Am. Chem. Soc., 135, 3315, 10.1021/ja309042m

Shui, 2015, Sci. Adv., 1, e1400129, 10.1126/sciadv.1400129

Li, 2015, Electrochim. Acta, 165, 191, 10.1016/j.electacta.2015.03.022

Domínguez, 2015, Electrochim. Acta, 157, 158, 10.1016/j.electacta.2015.01.031

Sa, 2014, Angew. Chem., Int. Ed., 126, 4186, 10.1002/ange.201307203

Zhao, 2013, J. Am. Chem. Soc., 135, 1201, 10.1021/ja310566z

Xu, 2013, RSC Adv., 3, 5577, 10.1039/c3ra20847h

Yu, 2012, J. Phys. Chem. Lett., 3, 2863, 10.1021/jz3011833

Yang, 2011, Angew. Chem., Int. Ed., 50, 7132, 10.1002/anie.201101287

Wang, 2011, Angew. Chem., Int. Ed., 50, 11756, 10.1002/anie.201105204

Yu, 2010, J. Am. Chem. Soc., 132, 15127, 10.1021/ja105617z

Xiong, 2010, J. Am. Chem. Soc., 132, 15839, 10.1021/ja104425h

Tang, 2009, J. Am. Chem. Soc., 131, 13200, 10.1021/ja904595t

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

You, 2015, J. Power Sources, 275, 73, 10.1016/j.jpowsour.2014.10.174

Ma, 2015, Angew. Chem., Int. Ed., 127, 1908, 10.1002/ange.201410258

Han, 2015, Nanoscale, 7, 5955, 10.1039/C4NR07116F

Favaro, 2015, ACS Catal., 5, 129, 10.1021/cs501211h

Bag, 2015, Electrochim. Acta, 163, 16, 10.1016/j.electacta.2015.02.130

Zhang, 2014, J. Mater. Chem. A, 2, 7742, 10.1039/c4ta00814f

Wei, 2014, Angew. Chem., Int. Ed., 53, 1570, 10.1002/anie.201307319

Razmjooei, 2014, Carbon, 78, 257, 10.1016/j.carbon.2014.07.002

Li, 2014, Phys. Chem. Chem. Phys., 16, 23196, 10.1039/C4CP02528H

Cong, 2014, Nano Energy, 3, 55, 10.1016/j.nanoen.2013.10.010

Cao, 2014, Polym. Chem., 5, 2057, 10.1039/C3PY01581E

Bo, 2014, ACS Appl. Mater. Interfaces, 6, 3023, 10.1021/am405609d

Jeon, 2013, Adv. Mater., 25, 6138, 10.1002/adma.201302753

Jeon, 2013, Sci. Rep., 3, 1810, 10.1038/srep01810

Yao, 2012, Chem. Commun., 48, 1027, 10.1039/C2CC16192C

Yang, 2012, ACS Nano, 6, 205, 10.1021/nn203393d

Yang, 2012, Adv. Funct. Mater., 22, 3634, 10.1002/adfm.201200186

Wu, 2012, ACS Nano, 6, 9764, 10.1021/nn303275d

Wang, 2012, Angew. Chem., Int. Ed., 51, 4209, 10.1002/anie.201109257

Liang, 2012, Angew. Chem., Int. Ed., 51, 11496, 10.1002/anie.201206720

Li, 2012, J. Am. Chem. Soc., 134, 18932, 10.1021/ja309270h

Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j

Yang, 2011, Angew. Chem., Int. Ed., 50, 5339, 10.1002/anie.201100170

Sheng, 2011, ACS Nano, 5, 4350, 10.1021/nn103584t

Geng, 2011, Energy Environ. Sci., 4, 760, 10.1039/c0ee00326c

Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u

Zhao, 2015, ChemCatChem, 7, 1070, 10.1002/cctc.201500074

Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48

Ma, 2015, Angew. Chem., Int. Ed., 54, 4646, 10.1002/anie.201411125

Liu, 2015, J. Mater. Chem. A, 3, 3289, 10.1039/C4TA05937A

Liu, 2015, Nanoscale, 7, 6136, 10.1039/C5NR00013K

Li, 2015, Electrochem. Commun., 51, 6, 10.1016/j.elecom.2014.11.020

Gao, 2015, Nano Energy, 12, 785, 10.1016/j.nanoen.2015.02.004

Gao, 2015, Energy Environ. Sci., 8, 221, 10.1039/C4EE02087A

Chen, 2015, J. Mater. Chem. A, 3, 5617, 10.1039/C4TA06764A

Chen, 2015, ChemSusChem, 8, 623, 10.1002/cssc.201403000

Zhao, 2014, Energy Environ. Sci., 7, 1913, 10.1039/c4ee00106k

Zhang, 2014, Phys. Chem. Chem. Phys., 16, 13605, 10.1039/C4CP00757C

Yang, 2014, Carbon, 67, 736, 10.1016/j.carbon.2013.10.065

Xu, 2014, J. Colloid Interface Sci., 421, 160, 10.1016/j.jcis.2014.02.001

Liang, 2014, Nat. Commun., 5, 4973, 10.1038/ncomms5973

Li, 2014, Energy Environ. Sci., 7, 3720, 10.1039/C4EE01779J

Li, 2014, Sci. Rep., 4, 5130, 10.1038/srep05130

Ito, 2014, Adv. Mater., 26, 4145, 10.1002/adma.201400570

Hu, 2014, Nanoscale, 6, 8002, 10.1039/c4nr01184h

He, 2014, Angew. Chem., Int. Ed., 53, 9503, 10.1002/anie.201404333

Gao, 2014, J. Mater. Chem. A, 2, 3317, 10.1039/c3ta14281g

Cui, 2014, J. Power Sources, 259, 138, 10.1016/j.jpowsour.2014.02.084

Cheon, 2014, J. Am. Chem. Soc., 136, 8875, 10.1021/ja503557x

Chen, 2014, Energy Environ. Sci., 7, 4095, 10.1039/C4EE02531H

Xue, 2013, Phys. Chem. Chem. Phys., 15, 12220, 10.1039/c3cp51942b

Hu, 2013, Nanoscale, 5, 2726, 10.1039/c3nr34002c

Zhao, 2012, Angew. Chem., Int. Ed., 51, 11371, 10.1002/anie.201206554

Yang, 2012, J. Am. Chem. Soc., 134, 16127, 10.1021/ja306376s

Jin, 2012, Nanoscale, 4, 6455, 10.1039/c2nr31858j

Chen, 2012, Adv. Mater., 24, 5593, 10.1002/adma.201202424

Zheng, 2011, J. Am. Chem. Soc., 133, 20116, 10.1021/ja209206c

Yang, 2011, J. Am. Chem. Soc., 133, 206, 10.1021/ja108039j

Su, 2010, ChemSusChem, 3, 169, 10.1002/cssc.200900180

Liu, 2010, Angew. Chem., Int. Ed., 49, 2565, 10.1002/anie.200907289

Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563

Shin, 2015, RSC Adv., 5, 1571, 10.1039/C4RA12209G

Geng, 2015, J. Mater. Chem. A, 3, 1795, 10.1039/C4TA06008C

Wang, 2014, Energy Environ. Sci., 7, 576, 10.1039/c3ee43463j

Hung, 2014, J. Chin. Chem. Soc., 61, 93, 10.1002/jccs.201300286

Othman, 2012, Int. J. Hydrogen Energy, 37, 357, 10.1016/j.ijhydene.2011.08.095

Sun, 2015, Nanoscale, 7, 1250, 10.1039/C4NR05838K

Jaouen, 2011, Energy Environ. Sci., 4, 114, 10.1039/C0EE00011F

Wang, 2014, Chem. Soc. Rev., 43, 7067, 10.1039/C4CS00141A

Falcao, 2007, J. Chem. Technol. Biotechnol., 82, 524, 10.1002/jctb.1693

R. L. McCreery , in Electroanal. Chem., ed. A. J. Bard, Dekker, New York, 1991, vol. 17, pp. 221–374

McCreery, 2008, Chem. Rev., 108, 2646, 10.1021/cr068076m

McCreery, 2014, Faraday Discuss., 172, 9, 10.1039/C4FD00172A

Perkin, 1908, Trans. Faraday Soc., 3, 205, 10.1039/tf9080300205

Dodelet, 2014, ChemCatChem, 6, 1866, 10.1002/cctc.201402133

Wang, 2005, Electroanalysis, 17, 7, 10.1002/elan.200403113

Yáñez-Sedeño, 2010, TrAC, Trends Anal. Chem., 29, 939, 10.1016/j.trac.2010.06.006

Yang, 2010, Angew. Chem., Int. Ed., 49, 2114, 10.1002/anie.200903463

Vashist, 2011, Biotechnol. Adv., 29, 169, 10.1016/j.biotechadv.2010.10.002

Shao, 2010, Electroanalysis, 22, 1027, 10.1002/elan.200900571

Guo, 2011, Chem. Soc. Rev., 40, 2644, 10.1039/c0cs00079e

Ambrosi, 2014, Chem. Rev., 114, 7150, 10.1021/cr500023c

Walcarius, 2012, TrAC, Trends Anal. Chem., 38, 79, 10.1016/j.trac.2012.05.003

Walcarius, 2013, Chem. Soc. Rev., 42, 4098, 10.1039/c2cs35322a

Zhou, 2015, ChemCatChem, 7, 2744, 10.1002/cctc.201500198

Li, 2014, Nano Today, 9, 668, 10.1016/j.nantod.2014.09.002

Zheng, 2015, Adv. Mater., 27, 5372, 10.1002/adma.201500821

Zheng, 2015, Angew. Chem., Int. Ed., 54, 52, 10.1002/anie.201407031

Duan, 2015, ACS Catal., 5, 5207, 10.1021/acscatal.5b00991

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Wen, 2012, Adv. Mater., 24, 1399, 10.1002/adma.201104392

Yang, 2015, J. Am. Chem. Soc., 137, 1436, 10.1021/ja5129132

Hu, 2014, ChemSusChem, 7, 2099, 10.1002/cssc.201402183

Lee, 2013, Angew. Chem., Int. Ed., 52, 1026, 10.1002/anie.201207193

Hu, 2014, Angew. Chem., Int. Ed., 53, 3675, 10.1002/anie.201400358

Yang, 2014, Chem. Commun., 50, 11151, 10.1039/C4CC03987D

Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e

Li, 2012, J. Am. Chem. Soc., 134, 15, 10.1021/ja206030c

Gong, 2015, ACS Catal., 5, 920, 10.1021/cs501632y

Higgins, 2014, ACS Catal., 4, 2734, 10.1021/cs5003806

Gao, 2014, ACS Catal., 4, 1267, 10.1021/cs500221m

Zhang, 2014, Energy Environ. Sci., 7, 442, 10.1039/C3EE42799D

Feng, 2011, Energy Environ. Sci., 4, 1892, 10.1039/c1ee01153g

Jin, 2011, Energy Environ. Sci., 4, 3389, 10.1039/c1ee01437d

Sun, 2013, ACS Catal., 3, 1726, 10.1021/cs400374k

Tuci, 2013, ACS Catal., 3, 2108, 10.1021/cs400379h

Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A

Mao, 2014, Energy Environ. Sci., 7, 609, 10.1039/C3EE42696C

Hu, 2013, J. Power Sources, 225, 129, 10.1016/j.jpowsour.2012.10.013

Yang, 2015, Energy Environ. Sci., 8, 1799, 10.1039/C5EE00682A

Kramm, 2014, J. Am. Chem. Soc., 136, 978, 10.1021/ja410076f

Liu, 2013, Adv. Mater., 25, 6879, 10.1002/adma.201302786

Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849

Kroto, 1985, Nature, 318, 162, 10.1038/318162a0

Curl, 1997, Angew. Chem., Int. Ed., 36, 1566, 10.1002/anie.199715661

Kroto, 1997, Angew. Chem., Int. Ed., 36, 1578, 10.1002/anie.199715781

Smalley, 1997, Angew. Chem., Int. Ed., 36, 1594, 10.1002/anie.199715941

Chen, 1991, Science, 253, 886, 10.1126/science.253.5022.886

Bulhoes, 1993, Chem. Mater., 5, 110, 10.1021/cm00025a021

Imahori, 1997, Adv. Mater., 9, 537, 10.1002/adma.19970090704

Echegoyen, 1998, Acc. Chem. Res., 31, 593, 10.1021/ar970138v

Iijima, 1991, Nature, 354, 56, 10.1038/354056a0

Ajayan, 1999, Chem. Rev., 99, 1787, 10.1021/cr970102g

Poncharal, 1999, Science, 283, 1513, 10.1126/science.283.5407.1513

Kong, 2000, Science, 287, 622, 10.1126/science.287.5453.622

Vieira, 2002, Chem. Commun., 954, 10.1039/B202032G

Fan, 1999, Science, 283, 512, 10.1126/science.283.5401.512

Kim, 1999, Science, 286, 2148, 10.1126/science.286.5447.2148

Dai, 1996, Nature, 384, 147, 10.1038/384147a0

Dai, 2003, ChemPhysChem, 4, 1150, 10.1002/cphc.200300770

Lefèvre, 2009, Science, 324, 71, 10.1126/science.1170051

Yang, 2008, Chem. Commun., 329, 10.1039/B713096A

Titov, 2009, J. Phys. Chem. C, 113, 21629, 10.1021/jp810792d

Kundu, 2009, J. Phys. Chem. C, 113, 14302, 10.1021/jp811320d

Shi, 2013, J. Mater. Chem. A, 1, 14853, 10.1039/c3ta12647a

Wang, 2008, Chem. Mater., 20, 7195, 10.1021/cm801729y

Lee, 2003, J. Phys. Chem. B, 107, 12958, 10.1021/jp0274536

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Geim, 2011, Angew. Chem., Int. Ed., 50, 6966, 10.1002/anie.201101174

Novoselov, 2011, Angew. Chem., Int. Ed., 50, 6986, 10.1002/anie.201101502

Lee, 2008, Science, 321, 385, 10.1126/science.1157996

Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872

Park, 2009, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58

Rao, 2009, Angew. Chem., Int. Ed., 48, 7752, 10.1002/anie.200901678

Zhang, 2005, Nature, 438, 201, 10.1038/nature04235

Latil, 2006, Phys. Rev. Lett., 97, 036803, 10.1103/PhysRevLett.97.036803

Krishna, 2013, Nanomedicine, 8, 1669, 10.2217/nnm.13.140

Ma, 2014, Nanomedicine, 9, 1565, 10.2217/nnm.14.68

Young, 2012, Compos. Sci. Technol., 72, 1459, 10.1016/j.compscitech.2012.05.005

Lee, 2013, NANO, 8, 1330001, 10.1142/S1793292013300016

Roy-Mayhew, 2014, Chem. Rev., 114, 6323, 10.1021/cr400412a

Tang, 2014, Chem. Soc. Rev., 43, 4281, 10.1039/C3CS60437C

Zheng, 2014, Prog. Mater. Sci., 64, 200, 10.1016/j.pmatsci.2014.03.004

Kim, 2009, Nature, 457, 706, 10.1038/nature07719

Gao, 2014, J. Mater. Chem. A, 2, 6320, 10.1039/c3ta15443b

Jiao, 2014, J. Am. Chem. Soc., 136, 4394, 10.1021/ja500432h

Aihara, 1999, J. Phys. Chem. A, 103, 7487, 10.1021/jp990092i

Zhang, 2012, Langmuir, 28, 7542, 10.1021/la2043262

Liang, 2015, Nano Energy, 11, 366, 10.1016/j.nanoen.2014.11.008

Wu, 2012, J. Am. Chem. Soc., 134, 9082, 10.1021/ja3030565

Liang, 2014, Adv. Mater., 26, 6074, 10.1002/adma.201401848

Zhang, 2013, Adv. Mater., 25, 4932, 10.1002/adma.201301870

Zheng, 2013, Angew. Chem., Int. Ed., 52, 3110, 10.1002/anie.201209548

Deng, 2013, Angew. Chem., Int. Ed., 52, 371, 10.1002/anie.201204958

Hafner, 1998, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0

Takagi, 2006, Nano Lett., 6, 2642, 10.1021/nl061797g

Pumera, 2012, Chem. Sci., 3, 3347, 10.1039/c2sc21374e

Banks, 2006, Angew. Chem., Int. Ed., 45, 2533, 10.1002/anie.200600033

Šljukić, 2006, Nano Lett., 6, 1556, 10.1021/nl060366v

Batchelor-McAuley, 2008, Sens. Actuators, B, 132, 356, 10.1016/j.snb.2008.01.049

Dai, 2006, Analyst, 131, 901, 10.1039/B606197D

Ambrosi, 2010, Chem. – Eur. J., 16, 10946, 10.1002/chem.201001584

Chng, 2011, Electrochem. Commun., 13, 781, 10.1016/j.elecom.2011.05.001

Stuart, 2011, Chem. – Asian J., 6, 804, 10.1002/asia.201000656

Stuart, 2011, Chem. – Eur. J., 17, 5544, 10.1002/chem.201003639

Wang, 2014, Chem. Commun., 50, 12662, 10.1039/C4CC03271C

Pumera, 2009, ChemPhysChem, 10, 1770, 10.1002/cphc.200900355

Pumera, 2009, J. Phys. Chem. C, 113, 4401, 10.1021/jp900069e

Ambrosi, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 12899, 10.1073/pnas.1205388109

Ambrosi, 2012, Angew. Chem., Int. Ed., 51, 500, 10.1002/anie.201106917

Wong, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 13774, 10.1073/pnas.1413389111

Ambrosi, 2014, Nanoscale, 6, 472, 10.1039/C3NR05230C

Yang, 2014, Electroanalysis, 26, 139, 10.1002/elan.201300128

Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017

Eng, 2013, Chem. – Eur. J., 19, 12673, 10.1002/chem.201301889

Sidik, 2006, J. Phys. Chem. B, 110, 1787, 10.1021/jp055150g

Huang, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 235410, 10.1103/PhysRevB.80.235410

Deng, 2011, Chem. Mater., 23, 1188, 10.1021/cm102666r