Liu, 2015, Science, 347, 1258832, 10.1126/science.1258832
Alm, 1981, Science, 211, 1379, 10.1126/science.211.4489.1379
Norvig, 2010, Nature, 463, 26, 10.1038/463026a
Arico, 2005, Nat. Mater., 4, 366, 10.1038/nmat1368
Ren, 2015, Renewable Sustainable Energy Rev., 41, 225, 10.1016/j.rser.2014.08.003
Wang, 2014, Part. Part. Syst. Charact., 31, 515, 10.1002/ppsc.201300315
Chang, 2013, Energy Environ. Sci., 6, 3483, 10.1039/c3ee42518e
Li, 2014, Adv. Energy Mater., 4, 1301415, 10.1002/aenm.201301415
Guer, 2013, Chem. Rev., 113, 6179, 10.1021/cr400072b
Liu, 2014, Chem. Rev., 114, 5117, 10.1021/cr400523y
Nasef, 2014, Chem. Rev., 114, 12278, 10.1021/cr4005499
Wang, 2013, Chem. Rev., 113, 8104, 10.1021/cr300491e
Zhang, 2012, Chem. Soc. Rev., 41, 2382, 10.1039/c2cs15269j
Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d
Devanathan, 2008, Energy Environ. Sci., 1, 101, 10.1039/b808149m
Hawkes, 2009, Energy Environ. Sci., 2, 729, 10.1039/b902222h
Grove, 1838, Philos. Mag. Series 3, 13, 430
Schœnbein, 1839, Philos. Mag. Series 3, 14, 43
Warshay, 1989, J. Power Sources, 29, 193, 10.1016/0378-7753(90)80019-A
K. A.
Burke
, Fuel cells for space science applications, 1st International Energy Conversion Engineering Conference, 2003
R.
Cohen
, Gemini fuel cell system, Proc. 20th Power Sources Conf., May 1966
Winter, 2004, Chem. Rev., 104, 4245, 10.1021/cr020730k
Zhou, 2011, Acc. Chem. Res., 44, 1232, 10.1021/ar200096g
Calabrese Barton, 2004, Chem. Rev., 104, 4867, 10.1021/cr020719k
Cracknell, 2008, Chem. Rev., 108, 2439, 10.1021/cr0680639
G. T. R.
Palmore
and G. M.Whitesides, Enzymatic conversion of biomass for fuels production, 1994, vol. 566, pp. 271–290
Logan, 2006, Environ. Sci. Technol., 40, 5181, 10.1021/es0605016
Zhou, 2010, J. Am. Chem. Soc., 132, 2172, 10.1021/ja910634e
Zhou, 2012, Electroanalysis, 24, 197, 10.1002/elan.201100631
Zhou, 2010, Lab Chip, 10, 2932, 10.1039/c0lc00009d
Zhou, 2012, Angew. Chem., Int. Ed., 51, 2686, 10.1002/anie.201107068
Cui, 2013, Acc. Chem. Res., 46, 1427, 10.1021/ar300254b
Guo, 2011, Acc. Chem. Res., 44, 491, 10.1021/ar200001m
Rinaldi, 2008, Energy Environ. Sci., 1, 417, 10.1039/b806498a
Zhang, 2014, Energy Environ. Sci., 7, 2535, 10.1039/C3EE43886D
Zhong, 2008, Energy Environ. Sci., 1, 454, 10.1039/b810734n
Choi, 2012, Nano Energy, 1, 534, 10.1016/j.nanoen.2012.05.001
Tiwari, 2013, Nano Energy, 2, 553, 10.1016/j.nanoen.2013.06.009
Steele, 2001, Nature, 414, 345, 10.1038/35104620
Gasteiger, 2005, Appl. Catal., B, 56, 9, 10.1016/j.apcatb.2004.06.021
Chen, 2010, Chem. Rev., 110, 3767, 10.1021/cr9003902
Nie, 2015, Chem. Soc. Rev., 44, 2168, 10.1039/C4CS00484A
Guo, 2013, Angew. Chem., Int. Ed., 52, 8526, 10.1002/anie.201207186
Bing, 2010, Chem. Soc. Rev., 39, 2184, 10.1039/b912552c
Hayden, 2013, Acc. Chem. Res., 46, 1858, 10.1021/ar400001n
Porter, 2013, Acc. Chem. Res., 46, 1867, 10.1021/ar3002238
Wu, 2013, Acc. Chem. Res., 46, 1878, 10.1021/ar400011z
Wu, 2013, Acc. Chem. Res., 46, 1848, 10.1021/ar300359w
Chen, 2010, Chem. Rev., 110, 3767, 10.1021/cr9003902
Kakati, 2014, Chem. Rev., 114, 12397, 10.1021/cr400389f
Wang, 2011, Chem. Rev., 111, 7625, 10.1021/cr100060r
Xu, 2014, Chem. Soc. Rev., 43, 2439, 10.1039/c3cs60351b
You, 2013, Chem. Soc. Rev., 42, 2880, 10.1039/C2CS35319A
Manthiram, 2008, Energy Environ. Sci., 1, 621, 10.1039/b811802g
Zheng, 2012, Small, 8, 3550, 10.1002/smll.201200861
Zhang, 2012, Nano Energy, 1, 514, 10.1016/j.nanoen.2012.02.008
Yang, 2013, Chin. J. Catal., 34, 1986, 10.1016/S1872-2067(12)60713-X
Liu, 2015, Electrocatalysis, 6, 132, 10.1007/s12678-014-0243-9
Alonso-Vante, 2010, ChemPhysChem, 11, 2732, 10.1002/cphc.200900817
Shao, 2007, J. Power Sources, 171, 558, 10.1016/j.jpowsour.2007.07.004
K.
Sasaki
, M.Sao and R.Adzic, “Dissolution and Stability of Platinum in Oxygen Cathodes” in Polymer Electrolyte Fuel Cell Durability, Springer Science, New York, 2009
Borup, 2007, Chem. Rev., 107, 3904, 10.1021/cr050182l
See the website on Fuel Cell System Cost – 2013: http://www.energy.gov/sites/prod/files/2014/03/f11/13012_fuel_cell_system_cost_2013.pdf
See the website on Fuel Cell Technical Team Roadmap: http://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf
Hu, 2015, J. Mater. Chem. A, 3, 1752, 10.1039/C4TA03986F
Sasaki, 2010, Angew. Chem., Int. Ed., 49, 8602, 10.1002/anie.201004287
De Bruijn, 2008, Fuel Cells, 8, 3, 10.1002/fuce.200700053
Chen, 2015, Appl. Energy, 142, 154, 10.1016/j.apenergy.2014.12.062
Kannan, 2015, J. Power Sources, 277, 312, 10.1016/j.jpowsour.2014.11.115
Chen, 2010, J. Electrochem. Soc., 157, A82, 10.1149/1.3258275
Ferreira, 2005, J. Electrochem. Soc., 152, A2256, 10.1149/1.2050347
Debe, 2006, J. Power Sources, 161, 1002, 10.1016/j.jpowsour.2006.05.033
Acres, 2001, J. Power Sources, 100, 60, 10.1016/S0378-7753(01)00883-7
C.
Morrill
, Apollo fuel cell System, Proceedings of the, 19th, Power Sources Conference, Atlantic City, NJ, 1965
E. M.
Cortright
, Apollo Expeditions to the Moon: The NASA History, Courier Corporation, 2012
G.
Hoogers
, Fuel cell technology handbook, CRC press, 2014
Guo, 2013, Angew. Chem., Int. Ed., 52, 3465, 10.1002/anie.201209871
Guo, 2012, J. Am. Chem. Soc., 134, 2492, 10.1021/ja2104334
Guo, 2013, J. Am. Chem. Soc., 135, 13879, 10.1021/ja406091p
Zhang, 2014, J. Am. Chem. Soc., 136, 7734, 10.1021/ja5030172
Zhao, 2014, J. Am. Chem. Soc., 136, 7551, 10.1021/ja502532y
Liang, 2012, J. Am. Chem. Soc., 134, 15849, 10.1021/ja305623m
Sun, 2015, ACS Catal., 5, 1857, 10.1021/cs502029h
Zhang, 2013, J. Mater. Chem. A, 1, 11457, 10.1039/c3ta12067h
Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923
Liang, 2012, J. Am. Chem. Soc., 134, 3517, 10.1021/ja210924t
Guo, 2012, Angew. Chem., Int. Ed., 51, 11770, 10.1002/anie.201206152
Wang, 2011, Angew. Chem., Int. Ed., 50, 10969, 10.1002/anie.201104004
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Xia, 2015, Energy Environ. Sci., 8, 568, 10.1039/C4EE02281E
Ci, 2015, J. Mater. Chem. A, 3, 7986, 10.1039/C5TA00894H
Zhu, 2013, Nano Lett., 13, 2947, 10.1021/nl401325u
Gao, 2015, Nano Energy, 13, 518, 10.1016/j.nanoen.2015.02.031
Gao, 2013, J. Am. Chem. Soc., 135, 3315, 10.1021/ja309042m
Shui, 2015, Sci. Adv., 1, e1400129, 10.1126/sciadv.1400129
Li, 2015, Electrochim. Acta, 165, 191, 10.1016/j.electacta.2015.03.022
Domínguez, 2015, Electrochim. Acta, 157, 158, 10.1016/j.electacta.2015.01.031
Sa, 2014, Angew. Chem., Int. Ed., 126, 4186, 10.1002/ange.201307203
Zhao, 2013, J. Am. Chem. Soc., 135, 1201, 10.1021/ja310566z
Xu, 2013, RSC Adv., 3, 5577, 10.1039/c3ra20847h
Yu, 2012, J. Phys. Chem. Lett., 3, 2863, 10.1021/jz3011833
Yang, 2011, Angew. Chem., Int. Ed., 50, 7132, 10.1002/anie.201101287
Wang, 2011, Angew. Chem., Int. Ed., 50, 11756, 10.1002/anie.201105204
Yu, 2010, J. Am. Chem. Soc., 132, 15127, 10.1021/ja105617z
Xiong, 2010, J. Am. Chem. Soc., 132, 15839, 10.1021/ja104425h
Tang, 2009, J. Am. Chem. Soc., 131, 13200, 10.1021/ja904595t
Gong, 2009, Science, 323, 760, 10.1126/science.1168049
You, 2015, J. Power Sources, 275, 73, 10.1016/j.jpowsour.2014.10.174
Ma, 2015, Angew. Chem., Int. Ed., 127, 1908, 10.1002/ange.201410258
Han, 2015, Nanoscale, 7, 5955, 10.1039/C4NR07116F
Favaro, 2015, ACS Catal., 5, 129, 10.1021/cs501211h
Bag, 2015, Electrochim. Acta, 163, 16, 10.1016/j.electacta.2015.02.130
Zhang, 2014, J. Mater. Chem. A, 2, 7742, 10.1039/c4ta00814f
Wei, 2014, Angew. Chem., Int. Ed., 53, 1570, 10.1002/anie.201307319
Razmjooei, 2014, Carbon, 78, 257, 10.1016/j.carbon.2014.07.002
Li, 2014, Phys. Chem. Chem. Phys., 16, 23196, 10.1039/C4CP02528H
Cong, 2014, Nano Energy, 3, 55, 10.1016/j.nanoen.2013.10.010
Cao, 2014, Polym. Chem., 5, 2057, 10.1039/C3PY01581E
Bo, 2014, ACS Appl. Mater. Interfaces, 6, 3023, 10.1021/am405609d
Jeon, 2013, Adv. Mater., 25, 6138, 10.1002/adma.201302753
Jeon, 2013, Sci. Rep., 3, 1810, 10.1038/srep01810
Yao, 2012, Chem. Commun., 48, 1027, 10.1039/C2CC16192C
Yang, 2012, ACS Nano, 6, 205, 10.1021/nn203393d
Yang, 2012, Adv. Funct. Mater., 22, 3634, 10.1002/adfm.201200186
Wu, 2012, ACS Nano, 6, 9764, 10.1021/nn303275d
Wang, 2012, Angew. Chem.,
Int. Ed., 51, 4209, 10.1002/anie.201109257
Liang, 2012, Angew. Chem., Int. Ed., 51, 11496, 10.1002/anie.201206720
Li, 2012, J. Am. Chem. Soc., 134, 18932, 10.1021/ja309270h
Lai, 2012, Energy Environ. Sci., 5, 7936, 10.1039/c2ee21802j
Yang, 2011, Angew. Chem., Int. Ed., 50, 5339, 10.1002/anie.201100170
Sheng, 2011, ACS Nano, 5, 4350, 10.1021/nn103584t
Geng, 2011, Energy Environ. Sci., 4, 760, 10.1039/c0ee00326c
Qu, 2010, ACS Nano, 4, 1321, 10.1021/nn901850u
Zhao, 2015, ChemCatChem, 7, 1070, 10.1002/cctc.201500074
Zhang, 2015, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Ma, 2015, Angew. Chem., Int. Ed., 54, 4646, 10.1002/anie.201411125
Liu, 2015, J. Mater. Chem. A, 3, 3289, 10.1039/C4TA05937A
Liu, 2015, Nanoscale, 7, 6136, 10.1039/C5NR00013K
Li, 2015, Electrochem. Commun., 51, 6, 10.1016/j.elecom.2014.11.020
Gao, 2015, Nano Energy, 12, 785, 10.1016/j.nanoen.2015.02.004
Gao, 2015, Energy Environ. Sci., 8, 221, 10.1039/C4EE02087A
Chen, 2015, J. Mater. Chem. A, 3, 5617, 10.1039/C4TA06764A
Chen, 2015, ChemSusChem, 8, 623, 10.1002/cssc.201403000
Zhao, 2014, Energy Environ. Sci., 7, 1913, 10.1039/c4ee00106k
Zhang, 2014, Phys. Chem. Chem. Phys., 16, 13605, 10.1039/C4CP00757C
Yang, 2014, Carbon, 67, 736, 10.1016/j.carbon.2013.10.065
Xu, 2014, J. Colloid Interface Sci., 421, 160, 10.1016/j.jcis.2014.02.001
Liang, 2014, Nat. Commun., 5, 4973, 10.1038/ncomms5973
Li, 2014, Energy Environ. Sci., 7, 3720, 10.1039/C4EE01779J
Li, 2014, Sci. Rep., 4, 5130, 10.1038/srep05130
Ito, 2014, Adv. Mater., 26, 4145, 10.1002/adma.201400570
Hu, 2014, Nanoscale, 6, 8002, 10.1039/c4nr01184h
He, 2014, Angew. Chem., Int. Ed., 53, 9503, 10.1002/anie.201404333
Gao, 2014, J. Mater. Chem. A, 2, 3317, 10.1039/c3ta14281g
Cui, 2014, J. Power Sources, 259, 138, 10.1016/j.jpowsour.2014.02.084
Cheon, 2014, J. Am. Chem. Soc., 136, 8875, 10.1021/ja503557x
Chen, 2014, Energy Environ. Sci., 7, 4095, 10.1039/C4EE02531H
Xue, 2013, Phys. Chem. Chem. Phys., 15, 12220, 10.1039/c3cp51942b
Hu, 2013, Nanoscale, 5, 2726, 10.1039/c3nr34002c
Zhao, 2012, Angew. Chem., Int. Ed., 51, 11371, 10.1002/anie.201206554
Yang, 2012, J. Am. Chem. Soc., 134, 16127, 10.1021/ja306376s
Jin, 2012, Nanoscale, 4, 6455, 10.1039/c2nr31858j
Chen, 2012, Adv. Mater., 24, 5593, 10.1002/adma.201202424
Zheng, 2011, J. Am. Chem. Soc., 133, 20116, 10.1021/ja209206c
Yang, 2011, J. Am. Chem. Soc., 133, 206, 10.1021/ja108039j
Su, 2010, ChemSusChem, 3, 169, 10.1002/cssc.200900180
Liu, 2010, Angew. Chem., Int. Ed., 49, 2565, 10.1002/anie.200907289
Dai, 2015, Chem. Rev., 115, 4823, 10.1021/cr5003563
Shin, 2015, RSC Adv., 5, 1571, 10.1039/C4RA12209G
Geng, 2015, J. Mater. Chem. A, 3, 1795, 10.1039/C4TA06008C
Wang, 2014, Energy Environ. Sci., 7, 576, 10.1039/c3ee43463j
Hung, 2014, J. Chin. Chem. Soc., 61, 93, 10.1002/jccs.201300286
Othman, 2012, Int. J. Hydrogen Energy, 37, 357, 10.1016/j.ijhydene.2011.08.095
Sun, 2015, Nanoscale, 7, 1250, 10.1039/C4NR05838K
Jaouen, 2011, Energy Environ. Sci., 4, 114, 10.1039/C0EE00011F
Wang, 2014, Chem. Soc. Rev., 43, 7067, 10.1039/C4CS00141A
Falcao, 2007, J. Chem. Technol. Biotechnol., 82, 524, 10.1002/jctb.1693
R. L.
McCreery
, in Electroanal. Chem., ed. A. J. Bard, Dekker, New York, 1991, vol. 17, pp. 221–374
McCreery, 2008, Chem. Rev., 108, 2646, 10.1021/cr068076m
McCreery, 2014, Faraday Discuss., 172, 9, 10.1039/C4FD00172A
Perkin, 1908, Trans. Faraday Soc., 3, 205, 10.1039/tf9080300205
Dodelet, 2014, ChemCatChem, 6, 1866, 10.1002/cctc.201402133
Wang, 2005, Electroanalysis, 17, 7, 10.1002/elan.200403113
Yáñez-Sedeño, 2010, TrAC, Trends Anal. Chem., 29, 939, 10.1016/j.trac.2010.06.006
Yang, 2010, Angew. Chem., Int. Ed., 49, 2114, 10.1002/anie.200903463
Vashist, 2011, Biotechnol. Adv., 29, 169, 10.1016/j.biotechadv.2010.10.002
Shao, 2010, Electroanalysis, 22, 1027, 10.1002/elan.200900571
Guo, 2011, Chem. Soc. Rev., 40, 2644, 10.1039/c0cs00079e
Ambrosi, 2014, Chem. Rev., 114, 7150, 10.1021/cr500023c
Walcarius, 2012, TrAC, Trends Anal. Chem., 38, 79, 10.1016/j.trac.2012.05.003
Walcarius, 2013, Chem. Soc. Rev., 42, 4098, 10.1039/c2cs35322a
Zhou, 2015, ChemCatChem, 7, 2744, 10.1002/cctc.201500198
Li, 2014, Nano Today, 9, 668, 10.1016/j.nantod.2014.09.002
Zheng, 2015, Adv. Mater., 27, 5372, 10.1002/adma.201500821
Zheng, 2015, Angew. Chem., Int. Ed., 54, 52, 10.1002/anie.201407031
Duan, 2015, ACS Catal., 5, 5207, 10.1021/acscatal.5b00991
Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087
Wen, 2012, Adv. Mater., 24, 1399, 10.1002/adma.201104392
Yang, 2015, J. Am. Chem. Soc., 137, 1436, 10.1021/ja5129132
Hu, 2014, ChemSusChem, 7, 2099, 10.1002/cssc.201402183
Lee, 2013, Angew. Chem., Int. Ed., 52, 1026, 10.1002/anie.201207193
Hu, 2014, Angew. Chem., Int. Ed., 53, 3675, 10.1002/anie.201400358
Yang, 2014, Chem. Commun., 50, 11151, 10.1039/C4CC03987D
Zhao, 2014, ACS Nano, 8, 12660, 10.1021/nn505582e
Li, 2012, J. Am. Chem. Soc., 134, 15, 10.1021/ja206030c
Gong, 2015, ACS Catal., 5, 920, 10.1021/cs501632y
Higgins, 2014, ACS Catal., 4, 2734, 10.1021/cs5003806
Gao, 2014, ACS Catal., 4, 1267, 10.1021/cs500221m
Zhang, 2014, Energy Environ. Sci., 7, 442, 10.1039/C3EE42799D
Feng, 2011, Energy Environ. Sci., 4, 1892, 10.1039/c1ee01153g
Jin, 2011, Energy Environ. Sci., 4, 3389, 10.1039/c1ee01437d
Sun, 2013, ACS Catal., 3, 1726, 10.1021/cs400374k
Tuci, 2013, ACS Catal., 3, 2108, 10.1021/cs400379h
Jiao, 2015, Chem. Soc. Rev., 44, 2060, 10.1039/C4CS00470A
Mao, 2014, Energy Environ. Sci., 7, 609, 10.1039/C3EE42696C
Hu, 2013, J. Power Sources, 225, 129, 10.1016/j.jpowsour.2012.10.013
Yang, 2015, Energy Environ. Sci., 8, 1799, 10.1039/C5EE00682A
Kramm, 2014, J. Am. Chem. Soc., 136, 978, 10.1021/ja410076f
Liu, 2013, Adv. Mater., 25, 6879, 10.1002/adma.201302786
Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849
Kroto, 1985, Nature, 318, 162, 10.1038/318162a0
Curl, 1997, Angew. Chem., Int. Ed., 36, 1566, 10.1002/anie.199715661
Kroto, 1997, Angew. Chem., Int. Ed., 36, 1578, 10.1002/anie.199715781
Smalley, 1997, Angew. Chem., Int. Ed., 36, 1594, 10.1002/anie.199715941
Chen, 1991, Science, 253, 886, 10.1126/science.253.5022.886
Bulhoes, 1993, Chem. Mater., 5, 110, 10.1021/cm00025a021
Imahori, 1997, Adv. Mater., 9, 537, 10.1002/adma.19970090704
Echegoyen, 1998, Acc. Chem. Res., 31, 593, 10.1021/ar970138v
Iijima, 1991, Nature, 354, 56, 10.1038/354056a0
Ajayan, 1999, Chem. Rev., 99, 1787, 10.1021/cr970102g
Poncharal, 1999, Science, 283, 1513, 10.1126/science.283.5407.1513
Kong, 2000, Science, 287, 622, 10.1126/science.287.5453.622
Vieira, 2002, Chem. Commun., 954, 10.1039/B202032G
Fan, 1999, Science, 283, 512, 10.1126/science.283.5401.512
Kim, 1999, Science, 286, 2148, 10.1126/science.286.5447.2148
Dai, 1996, Nature, 384, 147, 10.1038/384147a0
Dai, 2003, ChemPhysChem, 4, 1150, 10.1002/cphc.200300770
Lefèvre, 2009, Science, 324, 71, 10.1126/science.1170051
Yang, 2008, Chem. Commun., 329, 10.1039/B713096A
Titov, 2009, J. Phys. Chem. C, 113, 21629, 10.1021/jp810792d
Kundu, 2009, J. Phys. Chem. C, 113, 14302, 10.1021/jp811320d
Shi, 2013, J. Mater. Chem. A, 1, 14853, 10.1039/c3ta12647a
Wang, 2008, Chem. Mater., 20, 7195, 10.1021/cm801729y
Lee, 2003, J. Phys. Chem. B, 107, 12958, 10.1021/jp0274536
Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896
Geim, 2011, Angew. Chem., Int. Ed., 50, 6966, 10.1002/anie.201101174
Novoselov, 2011, Angew. Chem., Int. Ed., 50, 6986, 10.1002/anie.201101502
Lee, 2008, Science, 321, 385, 10.1126/science.1157996
Balandin, 2008, Nano Lett., 8, 902, 10.1021/nl0731872
Park, 2009, Nat. Nanotechnol., 4, 217, 10.1038/nnano.2009.58
Rao, 2009, Angew. Chem., Int. Ed., 48, 7752, 10.1002/anie.200901678
Zhang, 2005, Nature, 438, 201, 10.1038/nature04235
Latil, 2006, Phys. Rev. Lett., 97, 036803, 10.1103/PhysRevLett.97.036803
Krishna, 2013, Nanomedicine, 8, 1669, 10.2217/nnm.13.140
Ma, 2014, Nanomedicine, 9, 1565, 10.2217/nnm.14.68
Young, 2012, Compos. Sci. Technol., 72, 1459, 10.1016/j.compscitech.2012.05.005
Lee, 2013, NANO, 8, 1330001, 10.1142/S1793292013300016
Roy-Mayhew, 2014, Chem. Rev., 114, 6323, 10.1021/cr400412a
Tang, 2014, Chem. Soc. Rev., 43, 4281, 10.1039/C3CS60437C
Zheng, 2014, Prog. Mater. Sci., 64, 200, 10.1016/j.pmatsci.2014.03.004
Kim, 2009, Nature, 457, 706, 10.1038/nature07719
Gao, 2014, J. Mater. Chem. A, 2, 6320, 10.1039/c3ta15443b
Jiao, 2014, J. Am. Chem. Soc., 136, 4394, 10.1021/ja500432h
Aihara, 1999, J. Phys. Chem. A, 103, 7487, 10.1021/jp990092i
Zhang, 2012, Langmuir, 28, 7542, 10.1021/la2043262
Liang, 2015, Nano Energy, 11, 366, 10.1016/j.nanoen.2014.11.008
Wu, 2012, J. Am. Chem. Soc., 134, 9082, 10.1021/ja3030565
Liang, 2014, Adv. Mater., 26, 6074, 10.1002/adma.201401848
Zhang, 2013, Adv. Mater., 25, 4932, 10.1002/adma.201301870
Zheng, 2013, Angew. Chem., Int. Ed., 52, 3110, 10.1002/anie.201209548
Deng, 2013, Angew. Chem., Int. Ed., 52, 371, 10.1002/anie.201204958
Hafner, 1998, Chem. Phys. Lett., 296, 195, 10.1016/S0009-2614(98)01024-0
Takagi, 2006, Nano Lett., 6, 2642, 10.1021/nl061797g
Pumera, 2012, Chem. Sci., 3, 3347, 10.1039/c2sc21374e
Banks, 2006, Angew. Chem., Int. Ed., 45, 2533, 10.1002/anie.200600033
Šljukić, 2006, Nano Lett., 6, 1556, 10.1021/nl060366v
Batchelor-McAuley, 2008, Sens. Actuators, B, 132, 356, 10.1016/j.snb.2008.01.049
Dai, 2006, Analyst, 131, 901, 10.1039/B606197D
Ambrosi, 2010, Chem. – Eur. J., 16, 10946, 10.1002/chem.201001584
Chng, 2011, Electrochem. Commun., 13, 781, 10.1016/j.elecom.2011.05.001
Stuart, 2011, Chem. – Asian J., 6, 804, 10.1002/asia.201000656
Stuart, 2011, Chem. – Eur. J., 17, 5544, 10.1002/chem.201003639
Wang, 2014, Chem. Commun., 50, 12662, 10.1039/C4CC03271C
Pumera, 2009, ChemPhysChem, 10, 1770, 10.1002/cphc.200900355
Pumera, 2009, J. Phys. Chem. C, 113, 4401, 10.1021/jp900069e
Ambrosi, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 12899, 10.1073/pnas.1205388109
Ambrosi, 2012, Angew. Chem., Int. Ed., 51, 500, 10.1002/anie.201106917
Wong, 2014, Proc. Natl. Acad. Sci. U. S. A., 111, 13774, 10.1073/pnas.1413389111
Ambrosi, 2014, Nanoscale, 6, 472, 10.1039/C3NR05230C
Yang, 2014, Electroanalysis, 26, 139, 10.1002/elan.201300128
Hummers, 1958, J. Am. Chem. Soc., 80, 1339, 10.1021/ja01539a017
Eng, 2013, Chem. – Eur. J., 19, 12673, 10.1002/chem.201301889
Sidik, 2006, J. Phys. Chem. B, 110, 1787, 10.1021/jp055150g
Huang, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 235410, 10.1103/PhysRevB.80.235410
Deng, 2011, Chem. Mater., 23, 1188, 10.1021/cm102666r