Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hướng tới nền kinh tế tuần hoàn thực phẩm: xử lý thủy nhiệt chất thải từ rau quả hỗn hợp để thu nhận đường lên men và các hợp chất sinh học hoạt tính
Tóm tắt
Do hoạt động chế biến, trái cây và rau củ tạo ra một lượng chất thải đáng kể ở cấp độ chế biến, bán lẻ và tiêu thụ. Theo các mục tiêu của Châu Âu nhằm giảm lãng phí thực phẩm và đạt được một nền kinh tế tuần hoàn về tài nguyên, những chất thải sinh học này cần được tận dụng. Trong nghiên cứu này, quá trình thủy phân thủy nhiệt dưới các điều kiện khác nhau (nhiệt độ, thời gian, tỷ lệ chất thải/nước, giá trị pH) đã được thử nghiệm lần đầu tiên trên các chất thải sinh học bao gồm trái cây hoặc rau củ chín quá để tối ưu hóa việc chiết xuất đường lên men có thể được sử dụng làm nguyên liệu trong các quy trình sinh học. Dữ liệu thực nghiệm đã được mô hình hóa dựa trên các phản ứng bậc nhất không thuận nghịch, và các hằng số động học đã được xác định. Khi thủy phân chất thải trái cây được thực hiện ở 135 °C và pH 5 trong 40 phút, có thể thu được hơn 40 g đường khử trên 100 g chất thải (khối lượng khô), tương ứng với sự chiết xuất 97% tổng lượng carbohydrat. Nồng độ của các hợp chất ức chế (HMF, furfural, axit acetic) trong dung dịch thủy phân rất thấp và, ví dụ, một quá trình lên men để sản xuất bioethanol đã được thực hiện thành công với hiệu suất trên 95%. Ngoài ra, việc sản xuất các hợp chất sinh học hoạt tính qua xử lý thủy nhiệt cũng đã được nghiên cứu và các kết quả tốt nhất đạt được là 92% ức chế DPPH và 12 mg GAE/g (khối lượng khô) cho hoạt tính chống oxi hóa và các hợp chất phenolic, tương ứng. Những giá trị này tương tự hoặc thậm chí cao hơn so với những gì đã được báo cáo trong tài liệu sử dụng các bộ phận cụ thể của trái cây và rau củ.
Từ khóa
#circular economy #hydrothermal treatment #fermentable sugars #bioactive compounds #fruit waste #vegetable wasteTài liệu tham khảo
Agrawal R, Verma A, Singhania RR, Varjani S, Dong CD, Patel AK (2021) Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol 332:125042. https://doi.org/10.1016/j.biortech.2021.125042
Akca S, Akpinar A (2021) The effects of grape, pomegranate, sesame seed powder and their oils on probiotic ice cream: total phenolic contents, antioxidant activity and probiotic viability. Food Biosci 42:101203. https://doi.org/10.1016/j.fbio.2021.101203
Al-Farsi MA, Lee CY (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108:977–985. https://doi.org/10.1016/j.foodchem.2007.12.009
Annu AS, Kaur G, Sharma P, Singh S, Ikram S (2018) Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed 16:221–231. https://doi.org/10.1016/j.jab.2018.02.002
Arab M, Bahramian B, Schindeler A, Valtchev P, Dehghani F, McConchie R (2019) Extraction of phytochemicals from tomato leaf waste using subcritical carbon dioxide. Innov Food Sci Emerg Technol 57:102204. https://doi.org/10.1016/j.ifset.2019.102204
Arapoglou D, Varzakas T, Vlyssides A, Israilides C (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30:1898–1902. https://doi.org/10.1016/j.wasman.2010.04.017
Arumugam R, Manikandan M (2011) Fermentation of pretreated hydrolyzates of banana and mango fruit wastes for ethanol production. Asian J Exp Biol Sci 2:246–256
Blue D, Fortela DL, Holmes W, LeBoeuf S, Subramaniam R, Hernandez R, Zappi M, Revellame E (2021) Alkali pretreatment of industrial mixed vegetable waste for fermentable sugar production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01608-5
Caldas TW, Mazza KEL, Teles ASC, Mattos GN, Brígida AIS, Conte-Junior CA, Borguini RG, Godoy RLO, Cabral LMC, Tonon RV (2018) Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind Crops Prod 111:86–91. https://doi.org/10.1016/j.indcrop.2017.10.012
Castrica M, Rebucci R, Giromini C, Tretola M, Cattaneo D, Baldi A (2019) Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital J Anim Sci 18:336–341. https://doi.org/10.1080/1828051X.2018.1529544
CEAP (2020) The European Commissions. A new circular economy action plan. For a cleaner and more competitive Europe. Communication from the commission to the parliament, council and committees
Cekmecelioglu D, Uncu ON (2013) Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag 33:735–739. https://doi.org/10.1016/j.wasman.2012.08.003
Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3:415–431. https://doi.org/10.1007/s13205-013-0167-8
Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, Gueguim Kana EB (2020) Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renew Energy 146:1031–1040. https://doi.org/10.1016/j.renene.2019.07.042
de Paula LC, Iwassa IJ, Stevanato N, Zampar IS, Bolanho Barros BC, da Silva C (2021) Obtaining fermentable sugars and fiber concentrate from asparagus by-product. J Food Process Preserv 45:1–12. https://doi.org/10.1111/jfpp.15640
Díaz AI, Laca A, Laca A, Díaz M (2017) Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses. Waste Manag 67:59–66. https://doi.org/10.1016/j.wasman.2017.05.018
Dong X, Hu Y, Li Y, Zhou Z (2019) The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: a negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Sci Hortic (Amsterdam) 243:281–289. https://doi.org/10.1016/j.scienta.2018.08.036
Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956) A colorimetric method for the determination of sugars. Anal Chem 28:350–356. https://doi.org/10.1038/168167a0
Eroglu EC, Baysal Z, Unlu M, Seday U, Karasahin Z (2017) Effect of thermal treatment on synephrine, ascorbic acid and sugar content of Citrus aurantium (bitter orange) juice. Indian J Pharm Educ Res 51:S412–S416. https://doi.org/10.5530/ijper.51.3s.58
Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: conventional and emerging approaches. J Environ Manage 265. https://doi.org/10.1016/j.jenvman.2020.110510
FAO (2011) Global food losses and waste. Extent, causes and prevention (available at http://www.fao.org/docrep/014/mb060e/mb060e00.pdf)
Feumba Dibanda R, Panyoo Akdowa E, Rani P. A, Tongwa QM, Mbofung CM (2020) Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem 302:125308. https://doi.org/10.1016/j.foodchem.2019.125308
Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y (2019) Citrus peels waste as a source of value-added compounds: extraction and quantification of bioactive polyphenols. Food Chem 295:289–299. https://doi.org/10.1016/j.foodchem.2019.05.136
Goula AM, Lazarides HN (2015) Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: the cases of olive mill and pomegranate wastes. J Food Eng 167:45–50. https://doi.org/10.1016/j.jfoodeng.2015.01.003
Gustavsson J, Cederberg C, Sonesson U, Emanuelsson A(2011) Global food losses and food wastes: extent, causes and prevention. FAO
Guthrie F, Wang Y, Neeve N, Quek SY, Mohammadi K, Baroutian S (2020) Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod Process 122:136–144. https://doi.org/10.1016/j.fbp.2020.05.002
Huang R, Cao M, Guo H, Qi W, Su R, He Z (2014) Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. J Agric Food Chem 62:4643–4651. https://doi.org/10.1021/jf405172a
Ibarruri J, Cebrián M, Hernández I (2021) Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. J Environ Manage 281. https://doi.org/10.1016/j.jenvman.2020.111901
Jin Q, Qureshi N, Wang H, Huang H (2019) Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. Fuel 244:536–544. https://doi.org/10.1016/j.fuel.2019.01.177
Joensuu K, Hartikainen H, Karppinen S, Jaakkonen AK, Kuoppa-aho M (2021) Developing the collection of statistical food waste data on the primary production of fruit and vegetables. Environ Sci Pollut Res 28:24618–24627. https://doi.org/10.1007/s11356-020-09908-5
Kabir F, Tow WW, Hamauzu Y et al (2015) Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chem 167:358–362. https://doi.org/10.1016/j.foodchem.2014.06.099
Kallel F, Driss D, Chaari F, Belghith L, Bouaziz F, Ghorbel R, Chaabouni SE (2014) Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: influence of extracting solvents on its antimicrobial and antioxidant properties. Ind Crops Prod 62:34–41. https://doi.org/10.1016/j.indcrop.2014.07.047
Karić N, Maia AS, Teodorović A, Atanasova N, Langergraber G, Crini G, Ribeiro ARL, Đolić M (2022) Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem Eng J Adv 9. https://doi.org/10.1016/j.ceja.2021.100239
Kim M-S, Cha J, Kim DH (2013) Fermentative biohydrogen production from solid wastes, 1st edn. Elsevier B.V
Lafka T, Lazou AE, Sinanoglou VJ, Lazos ES (2011) Phenolic and antioxidant potential of olive oil mill wastes. Food Chem 125:92–98. https://doi.org/10.1016/j.foodchem.2010.08.041
Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890. https://doi.org/10.1016/j.biortech.2011.02.048
Liu J, Sandahl M, Sjöberg PJR, Turner C (2014) Pressurised hot water extraction in continuous flow mode for thermolabile compounds: extraction of polyphenols in red onions. Anal Bioanal Chem 406:441–445. https://doi.org/10.1007/s00216-013-7370-7
Mahato RK, Kumar D, Rajagopalan G (2020) Biohydrogen production from fruit waste by Clostridium strain BOH3. Renew Energy 153:1368–1377. https://doi.org/10.1016/j.renene.2020.02.092
Mahboubi A, Elyasi S, Doyen W, De Wever H, Taherzadeh MJ (2020) Concentration-driven reverse membrane bioreactor for the fermentation of highly inhibitory lignocellulosic hydrolysate. Process Biochem 92:409–416. https://doi.org/10.1016/j.procbio.2020.01.031
Marcillo-Parra V, Tupuna-Yerovi DS, González Z, Ruales J (2021b) Encapsulation of bioactive compounds from fruit and vegetable by-products for food application — a review. Trends Food Sci Technol 116:11–23. https://doi.org/10.1016/j.tifs.2021.07.009
Marcillo-Parra V, Anaguano M, Molina M, Tupuna-Yerovi DS, Ruales J (2021a) Characterization and quantification of bioactive compounds and antioxidant activity in three different varieties of mango (Mangifera indica L.) peel from the Ecuadorian region using HPLC-UV/VIS and UPLC-PDA. NFS J 23:1–7. https://doi.org/10.1016/j.nfs.2021.02.001
Martin-Lara MA, Chica-Redecillas L, Pérez A, Blázquez G, Garcia-Garcia G, Calero M (2020) Liquid hot water pretreatment and enzymatic hydrolysis as a valorization route of Italian Green Pepper waste to delivery free sugars. Foods 9
Mellinas AC, Jiménez A, Garrigós MC (2020) Optimization of microwave-assisted extraction of cocoa bean shell waste and evaluation of its antioxidant, physicochemical and functional properties. Lwt 127:109361. https://doi.org/10.1016/j.lwt.2020.109361
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
Moussi K, Nayak B, Perkins LB, Dahmoune F, Madani K, Chibane M (2015) HPLC-DAD profile of phenolic compounds and antioxidant activity of leaves extract of Rhamnus alaternus L. Ind Crops Prod 74:858–866. https://doi.org/10.1016/j.indcrop.2015.06.015
Multari S, Licciardello C, Caruso M, Martens S (2020) Monitoring the changes in phenolic compounds and carotenoids occurring during fruit development in the tissues of four citrus fruits. Food Res Int 134:109228. https://doi.org/10.1016/j.foodres.2020.109228
Nanda S, Reddy SN, Hunter HN, Dalai AK, Kozinski JA (2015) Supercritical water gasification of fructose as a model compound for waste fruits and vegetables. J Supercrit Fluids 104:112–121. https://doi.org/10.1016/j.supflu.2015.05.009
Nile A, Nile SH, Kim DH, Keum YS, Seok PG, Sharma K (2018) Valorization of onion solid waste and their flavonols for assessment of cytotoxicity, enzyme inhibitory and antioxidant activities. Food Chem Toxicol 119:281–289. https://doi.org/10.1016/j.fct.2018.02.056
Oberoi HS, Vadlani PV, Saida L, Bansal S, Hughes JS (2011) Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process. Waste Manag 31:1576–1584. https://doi.org/10.1016/j.wasman.2011.02.007
Odewale GO, Sosan MB, Oyekunle JAO, Adeleye AO (2021) Human health risk assessment of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) pesticide residues in fruits and vegetables in Nigeria. Environ Sci Pollut Res 28:33133–33145. https://doi.org/10.1007/s11356-021-12747-7
Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod 6:108–128. https://doi.org/10.1016/j.jobab.2021.02.00
Pattnaik M, Pandey P, Martin GJO, Mishra HN, Ashokkumar M (2021) Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods 10:1–30. https://doi.org/10.3390/foods10020279
Plazzotta S, Manzocco L (2018) Effect of ultrasounds and high pressure homogenization on the extraction of antioxidant polyphenols from lettuce waste. Innov Food Sci Emerg Technol 50:11–19. https://doi.org/10.1016/j.ifset.2018.10.004
Poe NE, Yu D, Jin Q, Ponder MA, Stewart A, Ogejo JA, Wang H, Huang H (2020) Compositional variability of food wastes and its effects on acetone-butanol-ethanol fermentation. Waste Manag 107:150–158. https://doi.org/10.1016/j.wasman.2020.03.035
Procentese A, Raganati F, Olivieri G, Russo ME, de la Feld M, Marzocchella A (2017) Renewable feedstocks for biobutanol production by fermentation. N Biotechnol. https://doi.org/10.1016/j.nbt.2016.10.010
Quintero JA, Rincón LE, Cardona CA (2011) Production of bioethanol from agroindustrial residues as feedstocks. Biofuels 251–285. https://doi.org/10.1016/B978-0-12-385099-7.00011-5
Redondo E, Laca A, Laca A, Rendueles M, Díaz M (2014) Evaluación de la obtención de bioetanol a partir de fruta no apta para el consumo. Rev Aliment 454:56–63
Rodríguez-Valderrama S, Escamilla-Alvarado C, Rivas-García P, Magnin JP, Alcalá-Rodriguez M, García-Reyes RB (2020) Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover. Environ Sci Pollut Res 27:28585–28596. https://doi.org/10.1007/s11356-020-08580-z
Rodriguez C, Alaswad A, Benyounis KY, Olabi AG (2017) Pretreatment techniques used in biogas production from grass. Renew Sustain Energy Rev 68:1193–1204. https://doi.org/10.1016/j.rser.2016.02.022
Sahoo A, Sarkar S, Lal B, Kumawat P, Sharma S, De K (2021) Utilization of fruit and vegetable waste as an alternative feed resource for sustainable and eco-friendly sheep farming. Waste Manag 128:232–242. https://doi.org/10.1016/j.wasman.2021.04.050
Saleem M, Saeed MT (2019) Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J King Saud Univ - Sci 2–7. https://doi.org/10.1016/j.jksus.2019.02.013
Saleem A, Hussain A, Chaudhary A, Ahmad QA, Iqtedar M, Javid A, Akram AM (2022) Acid hydrolysis optimization of pomegranate peels waste using response surface methodology for ethanol production. Biomass Convers Biorefinery 12:1513–1524. https://doi.org/10.1007/s13399-020-01117-x
Sánchez M, Laca A, Laca A, Díaz M (2021) Value‐added products from fruit and vegetable wastes: a review. CLEAN – Soil, Air, Water 49(8):2000376. https://doi.org/10.1002/clen.202000376
Seguí L, Fito Maupoey P (2018) An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J Clean Prod 172:1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284
Singh B, Singh JP, Kaur A, Singh N (2020) Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res Int 132:109114. https://doi.org/10.1016/j.foodres.2020.109114
Suhag M, Kumar A, Singh J (2020) Saccharification and fermentation of pretreated banana leaf waste for ethanol production. SN Appl Sci 2:1–9. https://doi.org/10.1007/s42452-020-03215-x
Sun X, Liu S, Zhang X, Tao Y, Boczkaj G, Yoon JY, Xuan X (2022) Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresour Technol 345:126251. https://doi.org/10.1016/j.biortech.2021.126251
Sun X, Yang Z, Wei X, Tao Y, Boczkaj G, Yoon JY, Xuan X, Chen S (2021) Multi-objective optimization of the cavitation generation unit structure of an advanced rotational hydrodynamic cavitation reactor. Ultrason Sonochem 80:105771. https://doi.org/10.1016/j.ultsonch.2021.105771
Tan JS, Phapugrangkul P, Lee CK, Lai ZW, Bakar MHA, Murugan P (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21:101293. https://doi.org/10.1016/j.bcab.2019.101293
Tempelman CHL, Jacobs JF, Ramkhelawan S, Mok A, van der Zalm W, Degirmenci V (2021) Processing of agricultural apple fruit waste into sugar rich feedstocks for the catalytic production of 5-HMF over a Sn Amberlyst-15 resin catalyst. J Ind Eng Chem 99:443–448. https://doi.org/10.1016/j.jiec.2021.04.056
Tsuji M, Goshima T, Matsushika A, Kudoh S, Hoshino T (2013) Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition. Cryobiology 67:241–243. https://doi.org/10.1016/j.cryobiol.2013.06.003
Tunchaiyaphum S, Eshtiaghi MN, Yoswathana N (2013) Extraction of bioactive compounds from mango peels using green technology. Int J Chem Eng Appl 4:194–198. https://doi.org/10.7763/ijcea.2013.v4.293
Ude MU, Oluka I, Eze PC (2020) Optimization and kinetics of glucose production via enzymatic hydrolysis of mixed peels. J Bioresour Bioprod 5:283–290. https://doi.org/10.1016/j.jobab.2020.10.007
Vázquez-González M, Fernández-Prior Á, Bermúde-Oria A, Rodríguez-Juan EM, Pérez-Rubio AG, Fernández-Bolaños J, Rodríguez-Gutiérrez G (2020) Utilization of strawberry and raspberry waste for the extraction of bioactive compounds by deep eutectic solvents. Lwt 130:109645. https://doi.org/10.1016/j.lwt.2020.109645
Vu HT, Scarlett CJ, Vuong QV (2019) Changes of phytochemicals and antioxidant capacity of banana peel during the ripening process; with and without ethylene treatment. Sci Hortic (Amsterdam) 253:255–262. https://doi.org/10.1016/j.scienta.2019.04.043
Widmer W, Zhou W, Grohmann K (2010) Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresour Technol 101:5242–5249. https://doi.org/10.1016/j.biortech.2009.12.038
Wijngaard HH, Rößle C, Brunton N (2009) A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. https://doi.org/10.1016/j.foodchem.2009.02.033
Wilkins MR (2009) Effect of orange peel oil on ethanol production by Zymomonas mobilis. Biomass and Bioenergy 33:538–541. https://doi.org/10.1016/j.biombioe.2008.08.010
Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717. https://doi.org/10.1111/1751-7915.12408
Zanivan J, Bonatto C, Scapini T, Dalastra C, Bazoti SF, Alves Júnior SL, Fongaro G, Treichel H (2022) Evaluation of bioethanol production from a mixed fruit waste by Wickerhamomyces sp. UFFS-CE-3.1.2. Bioenergy Res 15:175–182. https://doi.org/10.1007/s12155-021-10273-5
Zheng Y, Lee C, Yu C, Cheng YS, Zhang R, Jenkins BM, VanderGheynst JS (2013) Dilute acid pretreatment and fermentation of sugar beet pulp to ethanol. Appl Energy 105:1–7. https://doi.org/10.1016/j.apenergy.2012.11.070