Hướng tới các dấu hiệu sinh học mạng động trong việc điều chỉnh thần kinh ở chứng đau nửa đầu theo từng đợt

Markus Dahlem1, Sebastian Rode1, Arne May2, Naoya Fujiwara, Yoshito Hirata3, Kazuyuki Aihara3, Jürgen Kurths
1Department of Physics, AG NLD Cardiovascular Physics, Humboldt-Universität zu Berlin, Robert-Koch-Platz 4, 10115, Berlin, Germany
2Center for Experimental Medicine, Department of Systems Neuroscience, Universitätsklinikum Hamburg-Eppendorf, 20246, Hamburg, Germany
3Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan

Tóm tắt

Tóm tắt

Các phương pháp tính toán đã bổ sung cho các nghiên cứu thần kinh học thực nghiệm và lâm sàng, góp phần cải thiện hiểu biết của chúng ta về hệ thống thần kinh trong sức khỏe và bệnh tật. Đồng thời, việc điều chỉnh thần kinh dưới dạng kích thích điện và từ đang ngày càng được chấp nhận hơn trong các bệnh mãn tính và khó điều trị. Trong bài báo này, chúng tôi trước tiên khám phá tình hình khoa học hiện tại liên quan đến sự kết hợp giữa cả hai phát triển hướng tới thần kinh học tính toán chuyển giao. Sau đó, chúng tôi đề xuất một chiến lược để áp dụng khái niệm lý thuyết mới về dấu hiệu sinh học mạng động (DNB) trong các biểu hiện theo đợt của các rối loạn mãn tính. Cụ thể, như một ví dụ đầu tiên, chúng tôi giới thiệu việc sử dụng các mô hình tính toán trong chứng đau nửa đầu và minh họa dựa trên ví dụ này tiềm năng của DNB như là các tín hiệu cảnh báo sớm cho việc điều chỉnh thần kinh trong chứng đau nửa đầu theo từng đợt.

Từ khóa


Tài liệu tham khảo

Mackey M.C., Milton J.G., Dynamical diseases, Ann. N. Y. Acad. Sci., 1987, 504, 16–32

Milton J., Jung P., Epilepsy as a dynamic disease, Biological and medical physics series, Springer, Berlin, 2003

Scheer M., Bascompte J., Brock W.A., Brovkin V., Carpenter S.R., Dakos V., et al., Early-warning signals for critical transitions, Nature, 2009, 461, 53–59

Chen L., Liu R., Liu Z.P., Li M., Aihara K., Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Sci. Rep., 2012, 2, 342

Liu R., Li M., Liu Z.P., Wu J., Chen L., Aihara K., Identifying critical transitions and their leading biomolecular networks in complex diseases, Sci. Rep., 2012, 2, 813

Liu R., Wang X., Aihara K., Chen L., Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers, Med. Res. Rev., 2013, Epub ahead of print, doi: 10.1002/med.21293

Liu R., Aihara K., Chen L., Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes, Quant. Biol., 2013, 1, 105–114

Aihara K., Suzuki H., Theory of hybrid dynamical systems and its applications to biological and medical systems, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 4893–4914

Schiff S.J., Towards model-based control of Parkinson’s disease, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 2269–2308

Terman D., Rubin J.E., Yew A.C., Wilson C.J., Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 2002, 22, 2963–2976

Rubin J.E., McIntyre C.C., Turner R.S., Wichmann T, Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects, Eur. J. Neurosci., 2012, 36, 2213–2228

Dahlem M.A., Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine, Chaos, 2013, (in press)

Magis D., Schoenen J., Advances and challenges in neurostimulation for headaches, Lancet Neurol., 2012, 11, 708–719

Koehler P.J., Boes C.J., A history of non-drug treatment in headache, particularly migraine, Brain, 2010, 133, 2489–2500

Wiener N., Cybernetics; or control and communication in the animal and the machine, John Wiley & Sons, New York, 1948

Schiff S.J., Neural control engineering: the emerging intersection between control theory and neuroscience, MIT Press, Cambridge, MA, 2011

Goodfellow M., Schindler K., Baier G., Self-organised transients in a neural mass model of epileptogenic tissue dynamics, Neuroimage, 2012, 59, 2644–2660

Suffczynski P., Lopes da Silva F.H., Parra J., Velis D.N., Bouwman B.M., van Rijn C.M., et al., Dynamics of epileptic phenomena determined from statistics of ictal transitions, IEEE Trans. Biomed. Eng., 2006, 53, 524–532

Gin N.J., Ruggiero L., Lipton R.B., Silberstein S.D., Tvedskov J.F., Olesen J., et al., Premonitory symptoms in migraine: an electronic diary study, Neurology, 2003, 60, 935–940

Charles A., Migraine is not primarily a vascular disorder, Cephalalgia, 2012, 32, 431–432

Olesen J., The international classication of headache disorders, n3rd edition (beta version), Cephalalgia, 2013, 33, 629–808

Vincent M., Hadjikhani N., Migraine aura and related phenomena: beyond scotomata and scintillations, Cephalalgia, 2007, 27, 1368–1377

Karatas H., Erdener S.E., Gursoy-Ozdemir Y., Lule S., Eren-Kocak E., Sen Z.D., et al., Spreading depression triggers headache by activating neuronal Panx1 channels, Science, 2013, 339, 1092–1095

Rasmussen B.K., Olesen J., Migraine with aura and migraine without aura: an epidemiological study, Cephalalgia, 1992, 12, 221–228

Ahn A.H., On the temporal relationship between throbbing migraine pain and arterial pulse, Headache, 2010, 50, 1507–1510

Mo J., Maizels M., Ding M., Ahn A.H., Does throbbing pain have a brain signature?, Pain, 2013, 154, 1150–1155

Brandes J.L., The migraine cycle: patient burden of migraine during and between migraine attacks, Headache, 2008, 48, 430–441

Weiller C., May A., Limmroth V., Juptner M., Kaube H., Schayck R.V., et al., Brain stem activation in spontaneous human migraine attacks, Nat. Med., 1995, 1, 658–660

Welch K., Nagesh V., Aurora S.K., Gelman N., Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness?, Headache, 2001, 41, 629–637

Olesen J., Larsen B., and Lauritzen M., Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine, Ann. Neurol., 1981, 9, 344–352

Hadjikhani N., Sanchez Del Rio M., Wu O., Schwartz D., Bakker D., Fischl B., et al., Mechanisms of migraine aura revealed by functional MRI in human visual cortex, Proc. Natl. Acad. Sci. USA, 2001, 98, 4687–4692

Lauritzen M., Pathophysiology of the migraine aura. The spreading depression theory, Brain, 1994, 117, 199–210

Hansen J.M., Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., et al., Migraine headache is present in the aura phase: a prospective study, Neurology, 2012, 79, 2044–2049

Noseda R., Kainz V., Jakubowski M., Gooley J.J., Saper C.B., Digre K., et al., A neural mechanism for exacerbation of headache by light, Nat. Neurosci., 2010, 13, 239–245

Summ O., Charbit A.R., Andreou A.P., Goadsby P.J., Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus, Brain, 2010, 133, 2540–2548

Reshodko L.V., Bures J., Computer simulation of reverberating spreading depression in a network of cell automata, Biol. Cybern., 1975, 18, 181–189

Dahlem M.A., Müller S.C., Self-induced splitting of spiral-shaped spreading depression waves in chicken retina, Exp. Brain Res., 1997, 115, 319–324

Tuckwell H.C., Miura R.M., A mathematical model for spreading cortical depression, Biophys. J., 1978, 23, 257–276

Miura R.M., Huang H., Wylie J.J., Cortical spreading depression: an enigma, Eur. Phys. J. Spec. Top., 2007, 147, 287–302

Somjen G.G., Mechanisms of spreading depression and hypoxic spreading depression-like depolarization, Physiol. Rev., 2001, 81, 1065–1096

Ayata C., Spreading depression and neurovascular coupling, Stroke, 2013, 44(Suppl. 1), S87–89

Chang J.C., Brennan K., He D., Huang H., Miura R.M., Wilson P.L., et al., A mathematical model of the metabolic and perfusion effects on cortical spreading depression, arXiv, 2012, 1207.3563

Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544

Dreier J.P., Isele T.M., Reiurth C., Kirov S.A., Dahlem M.A., Herreras O., Is spreading depolarization characterized by an abrupt, massive release of Gibbs free energy from the human brain cortex?, Neuroscientist, 2013, 19, 25–42

Kager H., Wadman W.J., Somjen G.G., Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations, J. Neurophysiol., 2000, 84, 495–512

Shapiro B.E., Osmotic forces and gap junctions in spreading depression: a computational model, J. Comput. Neurosci., 2001, 10, 99–120

Somjen G.G., Kager H., Wadman W.J., Computer simulations of neuron-glia interactions mediated by ion flux, J. Comput. Neurosci., 2008, 25, 349–365

Yao W., Huang H., Miura R.M., A continuum neuronal model for the instigation and propagation of cortical spreading depression, Bull. Math. Biol., 2011, 73, 2773–2790

Bressloff P.C., Spatiotemporal dynamics of continuum neural fields, J. Phys. A, 2012, 45, 033001

Ullah G., Cressman J.R.Jr., Barreto E., Schiff S.J., The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. network and glial dynamics, J. Comput. Neurosci., 2009, 26, 171–183

Dahlem M.A., Hadjikhani N., Migraine aura: retracting particle-like waves in weakly susceptible cortex, PLoS One, 2009, 4, e5007

Dahlem M.A., Isele T.M., Transient localized wave patterns and their application to migraine, J. Math. Neurosci, 2013, 3, 7

Akhmediev N., Ankiewicz A., Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys., 2008, 751, 1–28

Kerner B.S., Osipov V.V., Autosolitons: a new approach to problems of self-organization and turbulence, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994

Strong A.J., Anderson P.J., Watts H.R., Virley D.J., Lloyd A., Irving E.A., et al., Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex, Brain, 2007, 130, 995–1008

Dahlem M.A., Müller S.C., Image processing techniques to analyse traveling waves, Forma, 1999, 13, 375–386

Dahlem M.A., Graf R., Strong A.J., Dreier J.P., Dahlem Y.A., Sieber M., et al., Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves, Physica D, 2010, 239, 889–903

Dreier J.P., The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease, Nat. Med., 2011, 17, 439–447

Grafstein B., Neural release of potassium during spreading depression, In: Brazier M.A. (ed.) Brain function. Cortical excitability and steady potentials, University of California Press, Berkeley, 1963, 87–124

Goadsby P.J., Lipton R.B., Ferrari M.D., Migraine — current understanding and treatment, N. Engl. J. Med., 2002, 346, 257–270

Schoenen J., Vandersmissen B., Jeangette S., Herroelen L., Vandenheede M., Gérard P., et al., Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial, Neurology, 2013, 80, 697–704

Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., Pearlman S.H., et al., Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, doubleblind, parallel-group, sham-controlled trial, Lancet Neurol., 2010, 9, 373–380

Ayata C., Cortical spreading depression triggers migraine attack: pro, Headache, 2010, 50, 725–730

DaSilva A.F., Mendonca M.E., Zaghi S., Lopes M., DosSantos M.F., Spierings E.L., et al., tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine, Headache, 2012, 52, 1283–1295

Antal A., Kriener N., Lang N., Boros K., Paulus W, Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine, Cephalalgia, 2011, 31, 820–828

Burstein R., Jakubowski M., Unitary hypothesis for multiple triggers of the pain and strain of migraine, J. Comp. Neurol., 2005, 493, 9–14

Goadsby P.J., Silberstein S.D., Migraine triggers: harnessing the messages of clinical practice, Neurology, 2013, 80, 424–425

Hougaard A., Amin F.M., Hauge A.W., Ashina M., Olesen J., Provocation of migraine with aura using natural trigger factors, Neurology, 2013, 80, 428–431

Paemeleire K., Goodman A.M., Results of a patient survey for an implantable neurostimulator to treat migraine headaches, J. Headache Pain, 2012, 13, 239–241

Tepper S.J., Rezai A., Narouze S., Steiner C., Mohajer P., Ansarinia M., Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation, Headache, 2009, 49, 983–989

Schoenen J., Jensen R.H., Lantéri-Minet M., Láinez M.J., Gaul C., Goodman A.M., et al., Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study, Cephalalgia, 2013, 33, 816–830

Son Y.D., Cho Z.H., Kim H.K., Choi E.J., Lee S.Y., Chi J.G., et al., Glucose metabolism of the midline nuclei raphe in the brainstem observed by PET-MRI fusion imaging, Neuroimage, 2012, 59, 1094–1097

Cressman J.R.Jr., Ullah G., Ziburkus J., Schiff S.J., Barreto E., The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics, J. Comput. Neurosci., 2009, 26, 159–170