Towards dynamical network biomarkers in neuromodulation of episodic migraine
Tóm tắt
Computational methods have complemented experimental and clinical neurosciences and led to improvements in our understanding of the nervous systems in health and disease. In parallel, neuromodulation in form of electric and magnetic stimulation is gaining increasing acceptance in chronic and intractable diseases. In this paper, we firstly explore the relevant state of the art in fusion of both developments towards translational computational neuroscience. Then, we propose a strategy to employ the new theoretical concept of dynamical network biomarkers (DNB) in episodic manifestations of chronic disorders. In particular, as a first example, we introduce the use of computational models in migraine and illustrate on the basis of this example the potential of DNB as early-warning signals for neuromodulation in episodic migraine.
Từ khóa
Tài liệu tham khảo
Milton J., Jung P., Epilepsy as a dynamic disease, Biological and medical physics series, Springer, Berlin, 2003
Scheer M., Bascompte J., Brock W.A., Brovkin V., Carpenter S.R., Dakos V., et al., Early-warning signals for critical transitions, Nature, 2009, 461, 53–59
Chen L., Liu R., Liu Z.P., Li M., Aihara K., Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Sci. Rep., 2012, 2, 342
Liu R., Li M., Liu Z.P., Wu J., Chen L., Aihara K., Identifying critical transitions and their leading biomolecular networks in complex diseases, Sci. Rep., 2012, 2, 813
Liu R., Wang X., Aihara K., Chen L., Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers, Med. Res. Rev., 2013, Epub ahead of print, doi: 10.1002/med.21293
Liu R., Aihara K., Chen L., Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes, Quant. Biol., 2013, 1, 105–114
Aihara K., Suzuki H., Theory of hybrid dynamical systems and its applications to biological and medical systems, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 4893–4914
Schiff S.J., Towards model-based control of Parkinson’s disease, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 2269–2308
Terman D., Rubin J.E., Yew A.C., Wilson C.J., Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 2002, 22, 2963–2976
Rubin J.E., McIntyre C.C., Turner R.S., Wichmann T, Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects, Eur. J. Neurosci., 2012, 36, 2213–2228
Dahlem M.A., Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine, Chaos, 2013, (in press)
Magis D., Schoenen J., Advances and challenges in neurostimulation for headaches, Lancet Neurol., 2012, 11, 708–719
Koehler P.J., Boes C.J., A history of non-drug treatment in headache, particularly migraine, Brain, 2010, 133, 2489–2500
Wiener N., Cybernetics; or control and communication in the animal and the machine, John Wiley & Sons, New York, 1948
Schiff S.J., Neural control engineering: the emerging intersection between control theory and neuroscience, MIT Press, Cambridge, MA, 2011
Goodfellow M., Schindler K., Baier G., Self-organised transients in a neural mass model of epileptogenic tissue dynamics, Neuroimage, 2012, 59, 2644–2660
Suffczynski P., Lopes da Silva F.H., Parra J., Velis D.N., Bouwman B.M., van Rijn C.M., et al., Dynamics of epileptic phenomena determined from statistics of ictal transitions, IEEE Trans. Biomed. Eng., 2006, 53, 524–532
Gin N.J., Ruggiero L., Lipton R.B., Silberstein S.D., Tvedskov J.F., Olesen J., et al., Premonitory symptoms in migraine: an electronic diary study, Neurology, 2003, 60, 935–940
Olesen J., The international classication of headache disorders, n3rd edition (beta version), Cephalalgia, 2013, 33, 629–808
Vincent M., Hadjikhani N., Migraine aura and related phenomena: beyond scotomata and scintillations, Cephalalgia, 2007, 27, 1368–1377
Karatas H., Erdener S.E., Gursoy-Ozdemir Y., Lule S., Eren-Kocak E., Sen Z.D., et al., Spreading depression triggers headache by activating neuronal Panx1 channels, Science, 2013, 339, 1092–1095
Rasmussen B.K., Olesen J., Migraine with aura and migraine without aura: an epidemiological study, Cephalalgia, 1992, 12, 221–228
Ahn A.H., On the temporal relationship between throbbing migraine pain and arterial pulse, Headache, 2010, 50, 1507–1510
Mo J., Maizels M., Ding M., Ahn A.H., Does throbbing pain have a brain signature?, Pain, 2013, 154, 1150–1155
Brandes J.L., The migraine cycle: patient burden of migraine during and between migraine attacks, Headache, 2008, 48, 430–441
Weiller C., May A., Limmroth V., Juptner M., Kaube H., Schayck R.V., et al., Brain stem activation in spontaneous human migraine attacks, Nat. Med., 1995, 1, 658–660
Welch K., Nagesh V., Aurora S.K., Gelman N., Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness?, Headache, 2001, 41, 629–637
Olesen J., Larsen B., and Lauritzen M., Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine, Ann. Neurol., 1981, 9, 344–352
Hadjikhani N., Sanchez Del Rio M., Wu O., Schwartz D., Bakker D., Fischl B., et al., Mechanisms of migraine aura revealed by functional MRI in human visual cortex, Proc. Natl. Acad. Sci. USA, 2001, 98, 4687–4692
Lauritzen M., Pathophysiology of the migraine aura. The spreading depression theory, Brain, 1994, 117, 199–210
Hansen J.M., Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., et al., Migraine headache is present in the aura phase: a prospective study, Neurology, 2012, 79, 2044–2049
Noseda R., Kainz V., Jakubowski M., Gooley J.J., Saper C.B., Digre K., et al., A neural mechanism for exacerbation of headache by light, Nat. Neurosci., 2010, 13, 239–245
Summ O., Charbit A.R., Andreou A.P., Goadsby P.J., Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus, Brain, 2010, 133, 2540–2548
Reshodko L.V., Bures J., Computer simulation of reverberating spreading depression in a network of cell automata, Biol. Cybern., 1975, 18, 181–189
Dahlem M.A., Müller S.C., Self-induced splitting of spiral-shaped spreading depression waves in chicken retina, Exp. Brain Res., 1997, 115, 319–324
Tuckwell H.C., Miura R.M., A mathematical model for spreading cortical depression, Biophys. J., 1978, 23, 257–276
Miura R.M., Huang H., Wylie J.J., Cortical spreading depression: an enigma, Eur. Phys. J. Spec. Top., 2007, 147, 287–302
Somjen G.G., Mechanisms of spreading depression and hypoxic spreading depression-like depolarization, Physiol. Rev., 2001, 81, 1065–1096
Chang J.C., Brennan K., He D., Huang H., Miura R.M., Wilson P.L., et al., A mathematical model of the metabolic and perfusion effects on cortical spreading depression, arXiv, 2012, 1207.3563
Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544
Dreier J.P., Isele T.M., Reiurth C., Kirov S.A., Dahlem M.A., Herreras O., Is spreading depolarization characterized by an abrupt, massive release of Gibbs free energy from the human brain cortex?, Neuroscientist, 2013, 19, 25–42
Kager H., Wadman W.J., Somjen G.G., Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations, J. Neurophysiol., 2000, 84, 495–512
Shapiro B.E., Osmotic forces and gap junctions in spreading depression: a computational model, J. Comput. Neurosci., 2001, 10, 99–120
Somjen G.G., Kager H., Wadman W.J., Computer simulations of neuron-glia interactions mediated by ion flux, J. Comput. Neurosci., 2008, 25, 349–365
Yao W., Huang H., Miura R.M., A continuum neuronal model for the instigation and propagation of cortical spreading depression, Bull. Math. Biol., 2011, 73, 2773–2790
Ullah G., Cressman J.R.Jr., Barreto E., Schiff S.J., The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. network and glial dynamics, J. Comput. Neurosci., 2009, 26, 171–183
Dahlem M.A., Hadjikhani N., Migraine aura: retracting particle-like waves in weakly susceptible cortex, PLoS One, 2009, 4, e5007
Dahlem M.A., Isele T.M., Transient localized wave patterns and their application to migraine, J. Math. Neurosci, 2013, 3, 7
Akhmediev N., Ankiewicz A., Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys., 2008, 751, 1–28
Kerner B.S., Osipov V.V., Autosolitons: a new approach to problems of self-organization and turbulence, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994
Strong A.J., Anderson P.J., Watts H.R., Virley D.J., Lloyd A., Irving E.A., et al., Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex, Brain, 2007, 130, 995–1008
Dahlem M.A., Müller S.C., Image processing techniques to analyse traveling waves, Forma, 1999, 13, 375–386
Dahlem M.A., Graf R., Strong A.J., Dreier J.P., Dahlem Y.A., Sieber M., et al., Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves, Physica D, 2010, 239, 889–903
Dreier J.P., The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease, Nat. Med., 2011, 17, 439–447
Grafstein B., Neural release of potassium during spreading depression, In: Brazier M.A. (ed.) Brain function. Cortical excitability and steady potentials, University of California Press, Berkeley, 1963, 87–124
Goadsby P.J., Lipton R.B., Ferrari M.D., Migraine — current understanding and treatment, N. Engl. J. Med., 2002, 346, 257–270
Schoenen J., Vandersmissen B., Jeangette S., Herroelen L., Vandenheede M., Gérard P., et al., Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial, Neurology, 2013, 80, 697–704
Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., Pearlman S.H., et al., Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, doubleblind, parallel-group, sham-controlled trial, Lancet Neurol., 2010, 9, 373–380
DaSilva A.F., Mendonca M.E., Zaghi S., Lopes M., DosSantos M.F., Spierings E.L., et al., tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine, Headache, 2012, 52, 1283–1295
Antal A., Kriener N., Lang N., Boros K., Paulus W, Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine, Cephalalgia, 2011, 31, 820–828
Burstein R., Jakubowski M., Unitary hypothesis for multiple triggers of the pain and strain of migraine, J. Comp. Neurol., 2005, 493, 9–14
Goadsby P.J., Silberstein S.D., Migraine triggers: harnessing the messages of clinical practice, Neurology, 2013, 80, 424–425
Hougaard A., Amin F.M., Hauge A.W., Ashina M., Olesen J., Provocation of migraine with aura using natural trigger factors, Neurology, 2013, 80, 428–431
Paemeleire K., Goodman A.M., Results of a patient survey for an implantable neurostimulator to treat migraine headaches, J. Headache Pain, 2012, 13, 239–241
Tepper S.J., Rezai A., Narouze S., Steiner C., Mohajer P., Ansarinia M., Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation, Headache, 2009, 49, 983–989
Schoenen J., Jensen R.H., Lantéri-Minet M., Láinez M.J., Gaul C., Goodman A.M., et al., Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study, Cephalalgia, 2013, 33, 816–830
Son Y.D., Cho Z.H., Kim H.K., Choi E.J., Lee S.Y., Chi J.G., et al., Glucose metabolism of the midline nuclei raphe in the brainstem observed by PET-MRI fusion imaging, Neuroimage, 2012, 59, 1094–1097