Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction

Journal of Hydrodynamics, Ser. B - Tập 30 Số 1 - Trang 49-61 - 2018
Abbas Khayyer1, Hitoshi Gotoh1, Hosein Falahaty1, Yuma Shimizu1
1Department of Civil and Earth Resources Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lucy L. B. A numerical approach to the testing of fission hypothesis [J]. Astronomical Journal, 1997, 82: 1013–1024.

Gingold R. A., Monaghan J. J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375–389.

Koshizuka S., Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid [J]. Nuclear Science and Engineering, 1996, 123: 421–434.

Fourey G. Développement d’une méthode de couplage fluide structure SPH Eléments Finis en vue de son application à l’hydrodynamique navale [D]. Doctoral Thesis, Nantes, France: Ecole Centralede Nantes, 2012.

Fourey G., Oger G., Le Touzé D. et al. Violent fluidstructure interaction simulations using a coupled SPH/FEM method [J]. IOP Conference Series: Materials Science and Engineering, 2010, 10(1): 012041.

Li Z., Leduc J., Nunez-Ramirez J. et al. A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluidstructure interaction problems with large interface motion [J]. Computational Mechanics, 2015, 55(4): 697–718.

Fourey G., Hermange C., Le Touzé D. et al. An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods [J]. Computer Physics Communications, 2017, 217: 66–81.

Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid-structure interaction by SPH [J]. Computers and Structures, 2007, 85(11-14): 879–890.

Rafiee A., Thiagarajan K. P. An SPH projection method for simulating fluid-hypoelastic structure interaction [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2785–2795.

Oger G., Brosset L., Guilcher P. M. et al. Simulations of hydro-elastic impacts using a parallel SPH model [J]. International Journal of Offshore and Polar Engineering, 2010, 20(3): 181–189.

Eghtesad A., Shafiei A. R., Mahzoon M. A new fluid–solid interface algorithm for simulating fluid structure problems in FGM plates [J]. Journal of Fluids and Structures, 2012, 30: 141–158.

Hwang S. C., Khayyer A., Gotoh H. et al. Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems [J]. Journal of Fluids and Structures, 2014, 50: 497–511.

Hwang S. C., Park J. C., Gotoh H. et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method [J]. Ocean Engineering, 2016, 118: 227–241.

Khayyer A., Falahaty H., Gotoh H. et al. An enhanced coupled Lagrangian solver for incompressible fluid and non-linear elastic structure interactions [J]. Journal of Japan Society of Civil Engineers, Ser. B2 (Coastal Engineering), 2016, 72(2): 1117–1122.

Khayyer A., Gotoh H., Falahaty H. et al. Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming [J]. Ocean Systems Engineering, 2017, 7(3): 299–318.

Foias C., Manley O., Rosa R. et al. Navier-Stokes equations and turbulence [M]. Cambridge, UK: Cambridge University Press, 2001, 364.

Bonet J., Lok T. S. L. Variational and momentum preservation aspects of smooth particle hydrodynamic formulations [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2): 97–115.

Marsden J. E., Hughes T. J. R. Mathematical foundations of elasticity [M]. New York, USA: Dover publication Inc., 1983, 556.

Kondo M., Suzuki Y., Koshizuka S. Suppressing localparticle oscillations in the Hamiltonian particle method for elasticity [J]. International Journal for Numerical Methods in Engineering, 2010, 81: 1514–1528.

Kondo M., Tanaka M., Harada T. et al. Elastic objects for computer graphic field using MPS method [C]. The 34th Annual Meeting of the Association for Computing Machineryʼs Special Interest Group on Graphics, San Diego, USA, 2007.

Suzuki Y., Koshizuka S. A Hamiltonian particle method for non-linear elastodynamics [J]. International Journal for Numerical Methods in Engineering, 2008, 74(8): 1344–1373.

Gotoh H., Khayyer A. Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering [J]. Journal of Ocean Engineering and Marine Energy, 2016, 2(3): 251–278.

Gotoh H., Okayasu A. Computational wave dynamics for innovative design of coastal structures [J]. Proceedings of the Japan Academy Ser. B, 2017, 93(9): 525–546.

Khayyer A., Gotoh H., Shimizu Y. et al. On enhancement of energy conservation properties of projection-based particle methods [J]. European Journal of Mechanics-B/Fluids, 2017, 66: 20–37.

Khayyer A., Gotoh H., Shimizu Y. Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context [J]. Journal of Computational Physics, 2017, 332: 236–256.

Shao S., Lo E. Y. M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface [J]. Advances in Water Resources, 2003, 26(7): 787–800.

Gotoh H., Okayasu A., Watanabe Y. Computational wave dynamics (Advanced series on ocean engineering) [M]. Singapore: World Scientific, 2013, 234.

Liu G. R., Liu M. B. Smoothed particle hydrodynamics: A meshfree particle method [M]. Singapore: World Scientific, 2003, 472.

Violeau D. Fluid mechanics and the SPH method, theory and applications [M]. Oxford, UK: Oxford University Press, 2012, 616.

Monaghan J. J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005, 68(8): 1703–1759.

Liu M. B., Li S. M. On the modeling of viscous incompressible flows with smoothed particle hydrodynamics [J]. Journal of Hydrodynamics, 2016, 28(5): 731–745.

Koshizuka S. Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer [J]. Journal of Nuclear Science and Technology, 2011, 48(2): 155–168.

Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluidstructure interactions [J]. Journal of Hydrodynamics, 2017, 29(2): 187–216.

Gray J. P., Monaghan J. J., Swift R. P. SPH elastic dynamics [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6641–6662.

Scolan Y. M. Hydroelastic behavior of a conical shell impacting on a quiescent-free surface of an incompressible liquid [J]. Journal of Sound and Vibration, 2004, 277(1-2): 163–203.

Allen T. Mechanics of flexible composite hull panels subjected to water impacts [D]. Doctoral Thesis, Auckland,New Zealand: University of Auckland, 2013.

Stenius I., Rosén A., Battley M. et al. Experimental hydroelastic characterization of slamming loaded marine panels [J]. Ocean Engineering, 2013, 74: 1–15.

Battley M., Allen T., Pehrson P. et al. Effects of panel stiffness on slamming responses of composite hull panels [C]. 17th International Conference Composite Materials, Edinburgh International Convention Centre (EICC), Edinburgh, UK, 2009.

Koshizuka S. Ryushiho (Particle method) [M]. Tokyo, Japan: Maruzen, 2005(in Japanese).

Belytschko T., Guo Y., Liu W. K. et al. A unified stability analysis of meshless particle methods [J]. International Journal for Numerical Methods in Engineering, 2000, 48(9): 1359–1400.

Belytschko T., Xiao S. P. Stability analysis of particle methods with corrected derivatives [J]. Computers and Mathematics with Applications, 2002, 43(3-5): 329–350.

Vignjevic R., Campbell J., Libersky L. D. A treatment of zero-energy modes in the smoothed particle hydrodynamics method [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 184(1): 67–85.

Randles P. W., Libersky L. D. Normalized SPH with stress points [J]. International Journal for Numerical Methods in Engineering, 2000, 48(10): 1445–1462.

Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells [M]. Second Edition, New York, USA: McGraw-Hill, 1959.

Long T., Hu D., Wan D. et al. An arbitrary boundary with ghost particles incorporated incoupled FEM-SPH model for FSI problems [J]. Journal of Computational Physics, 2017, 350: 166–183.

Liang D., He X., Zhang J. X. An ISPH model for flow-like landslides and interaction with structures [J]. Journal of Hydrodynamics, 2017, 29(5): 894–897.

Cercos-Pita J. L., Antuono M., Colagrossi A. et al. SPH energy conservation for fluid-solid interactions [J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 771–791.

Gotoh H., Shibahara T., Sakai T. Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering [J]. Computational Fluid Dynamics Journal, 2001, 9(4): 339–347.

Khayyer A., Gotoh H. Enhancement of performance and stability of MPS meshfree particle method for multiphase flows characterized by high density ratios [J]. Journal of Computational Physics, 2013, 242: 211–233.