Towards developing a segmentation method for cerebral aneurysm using a statistical multiresolution approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Higashida RT. What you should know about cerebral aneurysms. Pamphlet. American Heart Association Cardiovascular Council. 2003.
Nikravanshalmani A, Karamimohammdi M, Dehmeshki J. Segmentation and separation of cerebral aneurysms: a multi-phase approach. In: Image and signal processing and analysis (ISPA), 2013 8th international symposium on. 2013. pp. 505–510. https://doi.org/10.1109/ISPA.2013.6703793. IEEE.
Li Q, Li H. A novel algorithm based on contourlet transform for medical image segmentation. In: Bioinformatics and biomedical engineering (iCBBE), 2010 4th international conference on. 2010. pp. 1–3. https://doi.org/10.1109/ICBBE.2010.5515202. IEEE.
Wong, K.-P.: Medical image segmentation: methods and applications in functional imaging. In: Handbook of Biomedical Image Analysis, pp. 111–182. Boston: Springer; 2005. https://doi.org/10.1007/0-306-48606-7_3
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int J Comput Vision. 2015;115(3):211–52. https://doi.org/10.1007/s11263-015-0816-y.
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design and implementation. OSDI’16. USA: USENIX Association;2016. pp. 265–283.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. PyTorch: An imperative style high-performance deep learning library. Red Hook: Curran Associates Inc.; 2019.
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. 2014. https://doi.org/10.48550/ARXIV.1412.6980.
Khan MZ, Gajendran MK, Lee Y, Khan MA. Deep neural architectures for medical image semantic segmentation: review. IEEE Access. 2021;9:83002–24. https://doi.org/10.1109/ACCESS.2021.3086530.
Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-net and its variants for medical image segmentation: a review of theory and applications. IEEE Access. 2021;9:82031–57. https://doi.org/10.1109/ACCESS.2021.3086020.
Torres-Velazquez M, Chen W-J, Li X, McMillan AB. Application and construction of deep learning networks in medical imaging. IEEE Trans Radiat Plasma Med Sci. 2021;5(2):137–59. https://doi.org/10.1109/TRPMS.2020.3030611.
Thambawita V, Strmke I, Hicks SA, Halvorsen P, Parasa S, Riegler MA. Impact of image resolution on deep learning performance in endoscopy image classification: an experimental study using a large dataset of endoscopic images. Diagnostics. 2021. https://doi.org/10.3390/diagnostics11122183.
Orlando N, Gyacskov I, Gillies DJ, Guo F, Romagnoli C, D’Souza D, Cool DW, Hoover DA, Fenster A. Effect of dataset size, image quality, and image type on deep learning-based automatic prostate segmentation in 3d ultrasound. Phys Med Biol. 2022;67(7):074002. https://doi.org/10.1088/1361-6560/ac5a93.
Dakua SP. Performance divergence with data discrepancy: a review. Artif Intell Rev. 2013;40(4):429–55. https://doi.org/10.1007/s10462-011-9289-8.
Dakua SP, Sahambi JS. Detection of left ventricular myocardial contours from ischemic cardiac mr images. IETE J Res. 2011;57(4):372–84. https://doi.org/10.4103/0377-2063.86338.
Mitra J, Chandra A. Detection of cerebral aneurysm by performing thresholding-spatial filtering-thresholding operations on digital subtraction angiogram. Adv Comput Inf Technol. 2013. https://doi.org/10.1007/978-3-642-31552-7_93.
Dakua SP, Abinahed J, Zakaria A, Balakrishnan S, Younes G, Navkar N, Al-Ansari A, Zhai X, Bensaali F, Amira A. Moving object tracking in clinical scenarios: application to cardiac surgery and cerebral aneurysm clipping. Int J Comput Assist Radiol Surg. 2019;14(12):2165–76. https://doi.org/10.1007/s11548-019-02030-z.
Dakua SP, Sahambi JS. Weighting function in random walk based left ventricle segmentation. In: 2011 18th IEEE international conference on image processing. 2011. pp. 2133–2136. https://doi.org/10.1109/ICIP.2011.6116031.
Dakua SP, Sahambi JS. Automatic left ventricular contour extraction from cardiac magnetic resonance images using cantilever beam and random walk approach. Cardiovasc Eng. 2010;10(1):30–43. https://doi.org/10.1007/s10558-009-9091-2.
Chen Y, Navarro L, Wang Y, Courbebaisse G. Segmentation of the thrombus of giant intracranial aneurysms from ct angiography scans with lattice boltzmann method. Med Image Anal. 2014;18(1):1–8. https://doi.org/10.1016/j.media.2013.08.003.
Bogunovic H, Pozo JM, Villa-Uriol MC, Majoie CB, van den Berg R, Gratama van Andel HA, Macho JM, Blasco J, San Roman L, Frangi AF. Automated segmentation of cerebral vasculature with aneurysms in 3dra and tof-mra using geodesic active regions: an evaluation study. Med Phys. 2011;38(1):210–22. https://doi.org/10.1118/1.3515749.
Hentschke CM, Beuing O, Nickl R, Tonnies KD. Automatic cerebral aneurysm detection in multimodal angiographic images. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2011 IEEE, pp. 3116–3120 (2011). https://doi.org/10.1109/NSSMIC.2011.6152566. IEEE.
Jerman T, Pernus F, Likar B, Spiclin Z. Computer-aided detection and quantification of intracranial aneurysms. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2015 pp. 3–10. https://doi.org/10.1007/978-3-319-24571-3_1.
Suniaga S, Werner R, Kemmling A, Groth M, Fiehler J, Forkert ND. Computer-aided detection of aneurysms in 3d time-of-flight mra datasets. In: International workshop on machine learning in medical imaging. Berlin, Heidelberg: Springer; 2012. pp. 63–69. https://doi.org/10.1007/978-3-642-35428-18.
Zhang H, Jiao Y, Zhang Y, Shimada K. Automated segmentation of cerebral aneurysms based on conditional random field and gentle adaboost. Mesh Process Med Image Anal. 2012;2012:59–69. https://doi.org/10.1007/978-3-642-33463-47.
Su J, Vargas DV, Sakurai K. One pixel attack for fooling deep neural networks. IEEE Trans Evol Comput. 2019;23(5):828–41. https://doi.org/10.1109/TEVC.2019.2890858.
Lu P, Xia J, Li Z, Xiong J, Yang J, Zhou S, Wang L, Chen M, Wang C. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models. BioMed Eng. 2016;15(1):120. https://doi.org/10.1186/s12938-016-0241-7.
Lawonn K, Meuschke M, Wickenhfer R, Preim B, Hildebrandt K. A geometric optimization approach for the detection and segmentation of multiple aneurysms. Comput Graphics Forum. 2019;38(3):413–25. https://doi.org/10.1111/cgf.13699.10.1111/cgf.13699.
Chen Y, Courbebaisse G, Yu J, Lu D, Ge F. A method for giant aneurysm segmentation using euler aos elastica. Biomed Signal Process Control. 2020;62:102111. https://doi.org/10.1016/j.bspc.2020.102111.
AlZubi S, Islam N, Abbod M. Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. J Biomed Imag. 2011;2011:4. https://doi.org/10.1155/2011/136034.
Po D-Y, Do MN. Directional multiscale modeling of images using the contourlet transform. IEEE Trans Image Process. 2006;15(6):1610–20. https://doi.org/10.1109/TIP.2006.873450.
Moayedi F, Azimifar Z, Boostani R, Katebi S. Contourlet-based mammography mass classification using the svm family. Comput Biol Med. 2010;40(4):373–83. https://doi.org/10.1016/j.compbiomed.2009.12.006.
Do MN, Vetterli M. 4-contourlets. Stud Comput Math. 2003;10:83–105. https://doi.org/10.1016/S1570-579X(03)80032-0.
Do MN, Vetterli M (2001) Pyramidal directional filter banks and curvelets. In: Proceedings 2001 international conference on image processing. 2001. vol. 3, pp. 158–161. https://doi.org/10.1109/ICIP.2001.958075. IEEE.
Burt P, Adelson E. The laplacian pyramid as a compact image code. IEEE Trans Commun. 1983;31(4):532–40. https://doi.org/10.1109/TCOM.1983.1095851.
Bamberger RH, Smith MJ. A filter bank for the directional decomposition of images: theory and design. IEEE Trans Signal Process. 1992;40(4):882–93. https://doi.org/10.1109/78.127960.
Marroquin JL, Santana EA, Botello S. Hidden markov measure field models for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2003;25(11):1380–7. https://doi.org/10.1109/TPAMI.2003.1240112.
Chen S, Tong H, Cattani C. Markov models for image labeling. Math Problems Eng. 2011. https://doi.org/10.1155/2012/814356.
Zhang Y, Brady M, Smith S. Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57. https://doi.org/10.1109/42.906424.
Yazdani S, Yusof R, Karimian A, Pashna M, Hematian A. Image segmentation methods and applications in mri brain images. IETE Tech Rev. 2015;32(6):413–27. https://doi.org/10.1080/02564602.2015.1027307.
Liang J, Zhao X, Li D, Cao F, Dang C. Determining the number of clusters using information entropy for mixed data. Pattern Recogn. 2012;45(6):2251–65. https://doi.org/10.1016/j.patcog.2011.12.017.BrainDecoding.
Hiremath P, Akkasaligar PT, Badiger S. Speckle reducing contourlet transform for medical ultrasound images. Int J Compt Inf Engg. 2010;4(4):284–91.
Phoong S-M, Kim CW, Vaidyanathan P, Ansari R. A new class of two-channel biorthogonal filter banks and wavelet bases. IEEE Trans Signal Process. 1995;43(3):649–65. https://doi.org/10.1109/78.370620.
Cohen A, Daubechies I. Non-separable bidimensional. Revista Matematica Iberoamericana. 1993. https://doi.org/10.4171/RMI/133.
Gonzalez RC, Wood RE. Digital image processing, 2nd Edtn. Prentice-Hall; 2002.
Zitova B, Flusser J. Image registration methods: a survey. Image Vis Comput. 2003;21(11):977–1000. https://doi.org/10.1016/S0262-8856(03)00137-9.
Dakua SP, Abinahed J, Al-Ansari A. A pca-based approach for brain aneurysm segmentation. Multidimens Syst Signal Processng. 2016. https://doi.org/10.1007/s11045-016-0464-6.
Rai A, Brotman R, Hobbs G, Boo S. Semi-automated cerebral aneurysm segmentation and geometric analysis for web sizing utilizing a cloud-based computational platform. Interv Neuroradiol. 2021;27(6):828–36. https://doi.org/10.1177/15910199211009111.
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans Med Imag. 2019;38(8):1788–800. https://doi.org/10.1109/TMI.2019.2897538.
Wang S, Cao S, Wei D, Wang R, Ma K, Wang L, Meng D, Zheng Y. Lt-net: Label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: 2020 IEEE/CVF conference on computer vision and pattern recognition (CVPR). (2020). pp. 9159–9168. https://doi.org/10.1109/CVPR42600.2020.00918.
Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12(1):26–41. https://doi.org/10.1016/j.media.2007.06.004.