Towards convergence rate analysis of random forests for classification

Artificial Intelligence - Tập 313 - Trang 103788 - 2022
Wei Gao1, Fan Xu1, Zhi-Hua Zhou1
1National Key Laboratory for Novel Software Technology, Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing University, Nanjing 210093, China

Tài liệu tham khảo

Amaratunga, 2008, Enriched random forests, Bioinformatics, 24, 2010, 10.1093/bioinformatics/btn356 Amit, 1997, Shape quantization and recognition with randomized trees, Neural Comput., 9, 1545, 10.1162/neco.1997.9.7.1545 Arlot Athey, 2019, Generalized random forests, Ann. Stat., 47, 1148, 10.1214/18-AOS1709 Audibert, 2007, Fast learning rates for plug-in classifiers, Ann. Stat., 35, 608, 10.1214/009053606000001217 Basu, 2018, Iterative random forests to discover predictive and stable high-order interactions, Proc. Natl. Acad. Sci., 115, 1943, 10.1073/pnas.1711236115 Belgiu, 2016, Random forest in remote sensing: a review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24, 10.1016/j.isprsjprs.2016.01.011 Biau, 2012, Analysis of a random forests model, J. Mach. Learn. Res., 13, 1063 Biau, 2008, Consistency of random forests and other averaging classifiers, J. Mach. Learn. Res., 9, 2015 Biau, 2016, A random forest guided tour, Test, 25, 197, 10.1007/s11749-016-0481-7 Breiman, 2000 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Breiman, 2004 Clémençon, 2013, Ranking forests, J. Mach. Learn. Res., 14, 39 Cover, 1967, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory, 13, 21, 10.1109/TIT.1967.1053964 Criminisi, 2013 Criminisi, 2012, Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, Found. Trends Comput. Graph. Vis., 7, 81 Cutler, 2007, Random forests for classification in ecology, Ecology, 88, 2783, 10.1890/07-0539.1 Denil, 2013, Consistency of online random forests, 1256 Denil, 2014, Narrowing the gap: random forests in theory and in practice, 665 Devroye, 1986, A note on the height of binary search trees, J. ACM, 33, 489, 10.1145/5925.5930 Devroye, 1996 Dietterich, 2000, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Mach. Learn., 40, 139, 10.1023/A:1007607513941 Dinh, 2015, Learning from non-iid data: fast rates for the one-vs-all multiclass plug-in classifiers, 375 Fernández-Delgado, 2014, Do we need hundreds of classifiers to solve real world classification problems?, J. Mach. Learn. Res., 15, 3133 Gao, 2020, Towards convergence rate analysis of random forests for classification, 9300 Genuer, 2012, Variance reduction in purely random forests, J. Nonparametr. Stat., 24, 543, 10.1080/10485252.2012.677843 Genuer Genuer, 2017, Random forests for big data, Big Data Res., 9, 28, 10.1016/j.bdr.2017.07.003 Geurts, 2006, Extremely randomized trees, Mach. Learn., 63, 3, 10.1007/s10994-006-6226-1 Goetz, 2018, Active learning for non-parametric regression using purely random trees, 2537 Györfi Ho, 1998, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell., 20, 832, 10.1109/34.709601 Hoeffding, 1963, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., 301, 13, 10.1080/01621459.1963.10500830 Kazemitabar, 2017, Mondrian forests: efficient online random forests, 426 Klusowski Kontorovich, 2014, Maximum margin multiclass nearest neighbors, 892 Kwok, 1988, Multiple decision trees, 327 Lakshminarayanan, 2014, Mondrian forests: efficient online random forests, 3140 Li, 2019, A debiased MDI feature importance measure for random forests, 8047 Lin, 2006, Random forests and adaptive nearest neighbors, J. Am. Stat. Assoc., 101, 578, 10.1198/016214505000001230 Louppe, 2013, Understanding variable importances in forests of randomized trees, 431 Meinshausen, 2006, Quantile regression forests, J. Mach. Learn. Res., 7, 983 Menze, 2011, On oblique random forests, 453 Mitzenmacher, 2005 Mourtada, 2017, Universal consistency and minimax rates for online Mondrian forests, 3758 Puchkin, 2020, An adaptive multiclass nearest neighbor classifier, ESAIM Probab. Stat., 24, 69, 10.1051/ps/2019021 Qi, 2012, Random forest for bioinformatics, 307 Reed, 2003, The height of a random binary search tree, J. ACM, 50, 306, 10.1145/765568.765571 Robnik-Šikonja, 2004, Improving random forests, 359 Rodriguez, 2006, Rotation forest: a new classifier ensemble method, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1619, 10.1109/TPAMI.2006.211 Scornet, 2016, On the asymptotics of random forests, J. Multivar. Anal., 146, 72, 10.1016/j.jmva.2015.06.009 Scornet, 2015, Consistency of random forests, Ann. Stat., 43, 1716, 10.1214/15-AOS1321 Shalev-Shwartz, 2014 Shotton, 2013, Real-time human pose recognition in parts from single depth images, Commun. ACM, 56, 116, 10.1145/2398356.2398381 Svetnik, 2003, Random forest: a classification and regression tool for compound classification and QSAR modeling, J. Chem. Inf. Comput. Sci., 43, 1947, 10.1021/ci034160g Taddy, 2011, Dynamic trees for learning and design, J. Am. Stat. Assoc., 106, 109, 10.1198/jasa.2011.ap09769 Tang, 2018, When do random forests fail?, 2983 Wager, 2018, Estimation and inference of heterogeneous treatment effects using random forests, J. Am. Stat. Assoc., 113, 1228, 10.1080/01621459.2017.1319839 Wager, 2014, Confidence intervals for random forests: the jackknife and the infinitesimal jackknife, J. Mach. Learn. Res., 15, 1625 Wang, 2016, Bernoulli random forests: closing the gap between theoretical consistency and empirical soundness, 2167 Wang, 2017, A novel consistent random forest framework: Bernoulli random forests, IEEE Trans. Neural Netw. Learn. Syst., 29, 3510 Yang, 2019, On the robust splitting criterion of random forest, 1420 Yang, 1999, Minimax nonparametric classification - part I: rates of convergence, IEEE Trans. Inf. Theory, 45, 2271, 10.1109/18.796368 Zhou, 2017, Deep forest: towards an alternative to deep neural networks, 3553 Zhou, 2019, Deep forest, Nat. Sci. Rev., 6, 74, 10.1093/nsr/nwy108