Towards artifact-free characterization of surface topography using complex wavelets and total variation minimization

Applied Mathematics and Computation - Tập 170 - Trang 1014-1030 - 2005
Jianwei Ma

Tài liệu tham khảo

Chen, 1995, Multi-scale analysis of engineering surfaces, Int. J. Mach. Tools manufact., 35, 231, 10.1016/0890-6955(94)P2377-R Raja, 2002, Recent advances in separation of roughness, waviness and form, Precision Eng., 26, 222, 10.1016/S0141-6359(02)00103-4 Lee, 1998, Multi-scale analysis of engineering surfaces, Int. J. Math. Tools Manufact., 38, 581, 10.1016/S0890-6955(97)00105-3 Zahouani, 2001, Characterization of surface topography by continuous wavelet transform, Acta Phys. Superficierum, IV, 1 Josso, 2001, Wavelet strategy for surface roughness analysis and characterization, Comput. Methods Appl. Mech. Eng., 191, 829, 10.1016/S0045-7825(01)00292-4 Jiang, 1999, Three-dimensional surface characterisation for orthopaedic joint prostheses, Proc. Inst. Mech. Eng., 213, 49, 10.1243/0954411991534807 Sweldens, 1996, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmonic Anal., 3, 86, 10.1006/acha.1996.0015 Jiang, 2000, Development of a lifting wavelet representation for surface characterization, Proc. R. Soc. Lond. A, 456, 2283, 10.1098/rspa.2000.0613 Jiang, 2001, Application of the lifting wavelet to rough surfaces, Precision Eng., 25, 83, 10.1016/S0141-6359(00)00054-4 Kingsbury, 1999, Image processing with complex wavelets, Phil. Trans. R. Soc. Lond. A, 357, 2543, 10.1098/rsta.1999.0447 Kingsbury, 2001, Complex wavelets for shift invariant analysis and filtering of signals, Appl. Comput. Harmonic Anal., 10, 234, 10.1006/acha.2000.0343 J. Ma, X. Jiang, P. Scott, Shift invariant surface characterization based on complex wavelet transform, Pattern Recognit., submitted for publication. J. Ma, X. Jiang, L. Blunt, Complex wavelet transform for extraction of morphological features on surface topography, Euspen’s 4th Int. Conf., Glasgow, UK, May 30–June 2, 2004, pp. 350–351. C. Shaffrey, N. Kingsbury, I. Jermyn, Unsupervised image segmentation via Markov trees and complex wavelets, in: Proc. IEEE Conf. on Image Process., Rochester NY, 23–25 September, 2002. J. Neumann, G. Steidl, Dual-tree complex wavelet transform in the frequency domain and an application to signal classification, Int. J. Wavelet, Multiresolution, Inform. Process., in press. J. Ma, I. Moroz, C. Orphanidou, Multiscale voice morphing based on complex wavelet transform, Technical Report, OCIAM, University of Oxford, 2003. J. Ma, X. Jiang, P. Scott, Complex ridgelet transform for characterization of surface topography with line singularities, Phys. Lett. A, submitted for publication. Rudin, 1992, Nonlinear total variation based noise removal algorithm, Physica D, 60, 259, 10.1016/0167-2789(92)90242-F Vogel, 1998, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Trans. Image Process., 7, 813, 10.1109/83.679423 Dobson, 1997, Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 34, 1779, 10.1137/S003614299528701X A.B. Hamza, H. Krim, A variational approach to maximum a posteriori estimation for image denoising, in: M.A.T. Figueiredo, J. Zerubia, A.K. Jain (Eds.), EMMCVPR 2001, Lecture Notes in Computer Science, vol. 2134, 2001, pp. 19–34. Vese, 2004, Image denoising and decomposition with total variation minimization and oscillatory functions, J. Math. Imaging Vis., 20, 7, 10.1023/B:JMIV.0000011316.54027.6a Dibos, 2000, Global total variation minimization, SIAM J. Numer. Anal., 37, 646, 10.1137/S0036142998334838 Chambolle, 1997, Image recovery via total variation minimization and related problems, Numer. Math., 76, 167, 10.1007/s002110050258 Chambolle, 2004, An algorithm for total variation minimization and applications, J. Math. Imaging Vis., 20, 89 Chen, 2002, Adaptive total variation for image restoration in BV space, J. Math. Anal. Appl., 272, 117, 10.1016/S0022-247X(02)00141-5 Strong, 2003, Edge-preserving and scale-dependent properties of total variation regularization, Inverse Probl., 19, 165, 10.1088/0266-5611/19/6/059 Coifman, 2000, Combining the calculus of variations and wavelets for image enhancement, Appl. Comput. Harmonic Anal., 9, 1, 10.1006/acha.2000.0299 T. Chan, H. Zhou, Total variation improved wavelet thresholding in image compression, in: Proc. Int. Conf. Image Process., vol. 2, IEEE Press, Piscataway, NJ, 2000, pp. 391–394. Durand, 2003, Reconstruction of wavelet coefficients using total variation minimization, SIAM J. Sci. Comput., 24, 1754, 10.1137/S1064827501397792 Malgouyres, 2002, Minimizing the total variation under a general convex constraint for image restoration, IEEE Trans. Image Process., 11, 1450, 10.1109/TIP.2002.806241 Lintner, 2004, Solving a variational image restoration model which involves L∞ constraints, Inverse Probl., 20, 815, 10.1088/0266-5611/20/3/010 Malgouyres, 2002, A framework for image deblurring using wavelet packet bases, Appl. Comput. Harmonic Anal., 12, 309, 10.1006/acha.2002.0379 Candès, 2002, New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction, Signal Process., 82, 1519, 10.1016/S0165-1684(02)00300-6 Starck, 2003, Wavelets and curvelets for image deconvolution: A combined approach, Signal Process., 83, 2279, 10.1016/S0165-1684(03)00150-6 G. Steidl, J. Weickert, Relations between soft wavelet shrinkage and total variation denoising, in: L. Van Gool (Ed.), Pattern Recognit., Lecture Notes in Computer Science, vol. 2449, Springer, Berlin , 2002, pp. 198–205. Steidl, 2004, On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDE, SIAM J. Numer. Anal., 42, 686, 10.1137/S0036142903422429 Scherzer, 2003, Scale space methods and regularization for denoising and inverse problems, Adv. Imaging Electron. Phys., 128, 445, 10.1016/S1076-5670(03)80067-8 Strang, 1989, Wavelets and dilation equations: A brief introduction, SIAM Rev., 31, 614, 10.1137/1031128 F.C. Fernandes, Directional, shift-insensitive, complex wavelet transforms with controllable redundancy, Ph.D. thesis, Rice University, 2001. Gao, 2002, A study of two-channel complex-valued filterbanks and wavelets with orthogonality and symmetry properties, IEEE Trans. Signal Process., 50, 824, 10.1109/78.992127 Simoncelli, 1992, Shiftable multiscale transform, IEEE Trans. Inform. Theory, 38, 587, 10.1109/18.119725 Vese, 2003, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 553, 10.1023/A:1025384832106 Carasso, 2004, Singular integrals, image smoothness, and the recovery of texture in image deblurring, SIAM J. Appl. Math., 64, 1749, 10.1137/S0036139903428306