Towards a framework for non‐linear thermal models in shell domains
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ammar, A., Chinesta, F., Cueto, E. and Doblare, M. (2012), “Proper generalized decomposition of time‐multiscale models”, International Journal for Numerical Methods in Engineering, Vol. 90 No. 5.
Ammar, A., Mokdad, B., Chinesta, F. and Keunings, R. (2006), “A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 139, pp. 153‐76.
Ammar, A., Mokdad, B., Chinesta, F. and Keunings, R. (2007), “A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space‐time separated representations”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 144, pp. 98‐121.
Ammar, A., Normandin, M., Daim, F., Gonzalez, D., Cueto, E. and Chinesta, F. (2010), “Non‐incremental strategies based on separated representations: applications in computational rheology”, Communications in Mathematical Sciences, Vol. 8 No. 3, pp. 671‐95.
Bognet, B., Leygue, A., Chinesta, F., Poitou, A. and Bordeu, F. (2012), “Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity”, Computer Methods in Applied Mechanics and Engineering, Vol. 201‐204, pp. 1‐12.
Chinesta, F., Ammar, A. and Cueto, E. (2010a), “Proper generalized decomposition of multiscale models”, International Journal for Numerical Methods in Engineering, Vol. 83 Nos 8/9, pp. 1114‐32.
Chinesta, F., Ammar, A. and Cueto, E. (2010b), “Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models”, Archives of Computational Methods in Engineering, Vol. 17 No. 4, pp. 327‐50.
Chinesta, F., Ladeveze, P. and Cueto, E. (2011), “A short review on model order reduction based on proper generalized decomposition”, Archives of Computational Methods in Engineering, Vol. 18, pp. 395‐404.
Chinesta, F., Ammar, A., Leygue, A. and Keunings, R. (2011), “An overview of the proper generalized decomposition with applications in computational rheology”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 166, pp. 578‐92.
Chinesta, F., Ammar, A., Lemarchand, F., Beauchene, P. and Boust, F. (2008), “Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization”, Computer Methods in Applied Mechanics and Engineering, Vol. 197 No. 5, pp. 400‐13.
Cochelin, B., Damil, N. and Potier‐Ferry, M. (1994a), “Asymptotic‐numerical methods and pade approximants for non‐linear elastic structures”, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 1187‐213.
Cochelin, B., Damil, N. and Potier‐Ferry, M. (1994b), “The asymptotic numerical method: an efficient perturbation technique for nonlinear structural mechanics”, Revue Europeenne des Elements Finis, Vol. 3, pp. 281‐97.
Ghnatios, C., Chinesta, F., Cueto, E., Leygue, A., Breitkopf, P. and Villon, P. (2011), “Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion”, Composites Part A, Vol. 42, pp. 1169‐78.
Ghnatios, C., Masson, F., Huerta, A., Cueto, E., Leygue, A. and Chinesta, F. (2012), “Proper generalized decomposition based dynamic data‐driven control of thermal processes”, Computer Methods in Applied Mechanics and Engineering, Vol. 213‐216, pp. 29‐41.
Gonzalez, D., Ammar, A., Chinesta, F. and Cueto, E. (2010), “Recent advances in the use of separated representations”, International Journal for Numerical Methods in Engineering, Vol. 81 No. 5, pp. 637‐59.
Heyberger, C., Boucard, P.‐A. and Neron, D. (2012), “Multiparametric analysis within the proper generalized decomposition framework”, Computational Mechanics, Vol. 49 No. 3, pp. 277‐89.
Ladeveze, P., Neron, D. and Passieux, J.‐C. (2009), “On multiscale computational mechanics with time‐space homogenization”, in Fish, J. (Ed.), Multiscale Methods – Bridging the Scales in Science and Engineering, Oxford University Press, Oxford, pp. 247‐82, Chapter Space time scale bridging methods.
Ladeveze, P., Passieux, J.‐C. and Neron, D. (2010), “The Latin multiscale computational method and the proper generalized decomposition”, Computer Methods in Applied Mechanics and Engineering, Vol. 199 Nos 21/22, pp. 1287‐96.
Lamari, H., Ammar, A., Cartraud, P., Legrain, G., Jacquemin, F. and Chinesta, F. (2010), “Routes for efficient computational homogenization of non‐linear materials using the proper generalized decomposition”, Archives of Computational Methods in Engineering, Vol. 17 No. 4, pp. 373‐91.
Neron, D. and Ladeveze, P. (2010), “Proper generalized decomposition for multiscale and multiphysics problems”, Archives of Computational Methods in Engineering, Vol. 17 No. 4, pp. 351‐72.
Nouy, A. (2009), “Recent developments in spectral stochastic methods for the solution of stochastic partial differential equations”, Archives of Computational Methods in Engineering, Vol. 16 No. 3, pp. 251‐85.
Prud'homme, C., Rovas, D.V., Veroy, K., Machiels, L., Maday, Y., Patera, A.T. and Turinici, G. (2002), “Reliable real‐time solution of parametrized partial differential equations: reduced‐basis output bound methods”, Journal of Fluids Engineering, Vol. 124, pp. 70‐80.
Pruliere, E., Chinesta, F. and Ammar, A. (2010a), “On the deterministic solution of multidimensional parametric models by using the proper generalized decomposition”, Mathematics and Computers in Simulation, Vol. 81, pp. 791‐810.
Pruliere, E., Ferec, J., Chinesta, F. and Ammar, A. (2010b), “An efficient reduced simulation of residual stresses in composites forming processes”, International Journal of Material Forming, Vol. 3 No. 2, pp. 1339‐50.