Towards a computational method for imaging the extracellular potassium concentration during regional ischemia
Tài liệu tham khảo
Birnbaum, 2003, The electrocardiogram in ST elevation acute myocardial infarction: correlation with coronary anatomy and prognosis, Postgrad. Med. J., 79, 10.1136/pmj.79.935.490
Lau, 2001, Diagnosing acute cardiac ischemia in the emergency department: a systematic review of the accuracy and clinical effect of current technologies, Ann. Emerg. Med., 37, 453, 10.1067/mem.2001.114903
Wagner, 2002, Evaluation of advanced electrocardiographic diagnostic software for detection of prior myocardial infarction, Am. J. Cardiol., 89, 75, 10.1016/S0002-9149(01)02170-1
Pullan, 2005
L. Tung, A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. Thesis, MIT, Cambridge, MA, 1978.
Mardal, 2007, An order optimal solver for the discretized bidomain equations, Numer. Linear Algebra Appl., 14, 83, 10.1002/nla.501
Sundnes, 2006, On the computational complexity of the bidomain and the monodomain models of electrophysiology, Ann. Biomed. Eng., 34, 1088, 10.1007/s10439-006-9082-z
2001
Rudy, 1988, The inverse problem in electrocardiography: solutions in terms of epicardial potentials, Crit. Rev. Biomed. Eng., 16, 215
Franzone, 1985, A mathematical procedure for solving the inverse potential problem of electrocardiography: analysis of the time–space accuracy from in vitro experimental data, Math. Biosci., 77, 353, 10.1016/0025-5564(85)90106-3
Huiskamp, 1997, A new method for myocardial activation imaging, IEEE Trans. Biomed. Eng., 44, 433, 10.1109/10.581930
Pullan, 2001, Noninvasive electrical imaging of the heart: theory and model development, Ann. Biomed. Eng., 29, 817, 10.1114/1.1408921
Gulrajani, 1998, Forward and inverse problems of electrocardiography, IEEE Eng. Med. Biol., 17, 84, 10.1109/51.715491
Dössel, 2000, Inverse problem of electro- and magnetocardiography: review and recent progress, Int. J. Bioelectromagnet., 2
Modre, 2002, Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data, IEEE Trans. Biomed. Eng., 49, 1153, 10.1109/TBME.2002.803519
MacLeod, 1998, Recent progress in inverse problems in electrocardiology, IEEE Eng. Med. Biol., 17, 73, 10.1109/51.646224
Rudy, 1992, The electrocardiographic inverse problem, Crit. Rev. Biomed. Eng., 20, 25
Greensite, 1998, An improved method for estimating epicardial potentials from the body surface, IEEE Trans. Biomed. Eng., 45, 98, 10.1109/10.650360
Tilg, 2002, Model-based imaging of cardiac electrical excitation in humans, IEEE Trans. Med. Imag., 21, 1031, 10.1109/TMI.2002.804438
Messnarz, 2004, A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns, IEEE Trans. Biomed. Eng., 51, 273, 10.1109/TBME.2003.820394
Messnarz, 2004, A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space, IEEE Trans. Biomed. Eng., 51, 1609, 10.1109/TBME.2004.828038
Skipa, 2001, Simulation study of the effect of modeling errors on the solution of inverse cardiac source imaging problem using realistic source patterns, Proc. Comput. Cardiol., 28, 41
O. Skipa. Linear inverse problem of electrocardiography: Epicardial potentials and transmembrane voltages. Ph.D. Thesis, University of Karlsruhe, Helmesverlag Karlsruhe, 2004.
Nash, 2005, Challenges facing validation of noninvasive electrical imaging of the heart, Ann. Noninvas. Electrocardiol., 10, 73, 10.1111/j.1542-474X.2005.00608.x
He, 2003, Noninvasive imaging of cardiac transmembrane potentials within three-dimensional myocardium by means of a realistic geometry anisotropic heart model, IEEE Trans. Biomed. Eng., 50, 1190, 10.1109/TBME.2003.817637
Li, 2004, Non-invasive estimation of myocardial infarction by means of a heart-model-based imaging approach: a simulation study, Med. Biol. Eng. Comput., 42, 128, 10.1007/BF02351022
Farina, 2007, Model-based approach to the localization of infarction, Proc. Comput. Cardiol., 34, 173
Li, 1998, Source of electrocardiographic ST changes in subendocardial ischemia, Circ. Res., 82, 957, 10.1161/01.RES.82.9.957
Johnston, 2001, The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia, IEEE Trans. Biomed. Eng., 48, 1366, 10.1109/10.966596
Kilpatrick, 2003, Mechanisms of ST change in partial thickness ischemia, J. Electrocardiol., 36, 7, 10.1016/j.jelectrocard.2003.09.002
MacLachlan, 2005, Simulation of ST segment changes during subendocardial ischemia using a realistic 3D cardiac geometry, IEEE Trans. Biomed. Eng., 52, 799, 10.1109/TBME.2005.844270
MacLachlan, 2006, Computing the size and location of myocardial ischemia using measurements of ST-segment shift, IEEE Trans. Biomed. Eng., 53, 1024, 10.1109/TBME.2005.863928
Nielsen, 2007, On the use of the resting potential and level set methods for identifying ischemic heart disease: an inverse problem, J. Comput. Phys., 220, 772, 10.1016/j.jcp.2006.05.040
Nielsen, 2007, On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem, Math. Biosci., 210, 523, 10.1016/j.mbs.2007.06.003
MacLachlan, 2007, A linear system of partial differential equations modeling the resting potential of a heart with regional ischemia, Math. Biosci., 210, 238, 10.1016/j.mbs.2007.04.005
Sundnes, 2006
Luo, 1994, A dynamic model of the cardiac ventricular action potenial, Circ. Res., 74, 1071, 10.1161/01.RES.74.6.1071
Winslow, 1999, Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure II model studies, Circ. Res., 84, 571, 10.1161/01.RES.84.5.571
Cimponeriu, 2001, A theoretical analysis of acute ischemia and infarction using ecg reconstruction on a 2-d model of myocardium, IEEE Trans. Biomed. Eng., 48, 41, 10.1109/10.900247
Shaw, 1997, Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration, Cardiovasc. Res., 35, 256, 10.1016/S0008-6363(97)00093-X
Adams, 1975
Marti, 1986
Battermann, 1998, Preconditioners for Karush–Kuhn–Tucker matrices arising in the optimal control of distributed systems, vol. 126, 15
A. Battermann, E.W. Sachs, Block preconditioners for KKT systems in PDE-governed optimal control problems, in: K.H. Hoffmann, R.H.W. Hoppe, V. Schulz (Eds.), Workshop on Fast Solutions of Discretized Optimization Problems, International Series of Numerical Mathematics, vol. 138, Birkhäuser, Basel, 2001, pp. 1–18.
Borzì, 2003, Accuracy and convergence properties of the finite difference multigrid solution of an optimal control optimality system, SIAM J. Control Optim., 41, 1477, 10.1137/S0363012901393432
Haber, 2001, Preconditioned all-at-once methods for large sparse parameter estimation problems, Inverse Probl., 17, 1847, 10.1088/0266-5611/17/6/319
Heinkenschloss, 2006, Neumann–Neumann domain decomposition preconditioners for linear-quadratic elliptic optimal control problems, SIAM J. Sci. Comput., 28, 1001, 10.1137/040612774
B.F. Nielsen, K.A. Mardal, Efficient preconditioners for optimality systems arising in connection with inverse problems, submitted for publication.
Larsen, 2001
Pearson product-moment correlation coefficient. Available from: <http://en.wikipedia.org/wiki/pearson_product-moment_correlation_coefficient>.
Kirsch, 1996
Engl, 1996
Ramlau, 2002, Morozov’s discrepancy principle for Tikhonov-regularization of nonlinear operators, Numer. Func. Anal. Optim., 23, 147, 10.1081/NFA-120003676
Myocardial infarction. Available from: <http://en.wikipedia.org/wiki/myocardial_infarction>.