Towards a Standard Plant Species Spectral Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of Doñana National Park

ISPRS International Journal of Geo-Information - Tập 4 Số 4 - Trang 2472-2495
Marcos Jiménez1, Ricardo Díaz‐Delgado2
1Remote Sensing Area, National Institute of Aerospace Technologies (INTA), Ctra. Ajalvir s/n, Torrejón de Ardoz, 28850 Madrid, Spain
2Remote Sensing and GIS Lab., Doñana Biological Station, CSIC, Avda. Americo Vespucio, 41092 Sevilla, Spain;

Tóm tắt

One of the main applications of field spectroscopy is the generation of spectral libraries of Earth’s surfaces or materials to support mapping activities using imaging spectroscopy. To enhance the reliability of these libraries, spectral signature acquisition should be carried out following standard procedures and controlled experimental approaches. This paper presents a standard protocol for the creation of a spectral library for plant species. The protocol is based on characterizing the reflectance spectral response of different species in the spatiotemporal domain, by accounting for intra-species variation and inter-species similarity. A practical case study was conducted on the shrubland located in Doñana National Park (SW Spain). Spectral libraries of the five dominant shrub species were built (Erica scoparia, Halimium halimifolium, Ulex australis, Rosmarinus officinalis, and Stauracanthus genistoides). An estimation was made of the separability between species: on one hand, the Student’s t-test evaluates significant intra-species variability (p < 0.05) and on the other hand, spectral similarity value (SSV) and spectral angle mapper (SAM) algorithms obtain significant separability values for dominant species, although it was not possible to discriminate the legume species Ulex australis and Stauracanthus genistoides.

Từ khóa


Tài liệu tham khảo

Schmeller, 2008, European species and habitat monitoring: where are we now?, Biodivers. Conserv., 17, 3321, 10.1007/s10531-008-9514-1

He, 2011, Benefits of hyperspectral remote sensing for tracking plant invasions, Divers. Distrib., 17, 381, 10.1111/j.1472-4642.2011.00761.x

Ustin, 2004, Remote sensing of environment: State of the science and new directions, Remote Sensing for Natural Resources Management and Environmental Monitoring. Manual of Remote Sensing, Volume 4, 679

Schaepman, 2009, Earth system science related imaging spectroscopy—An assessment, Remote Sens. Environ, 113, 123, 10.1016/j.rse.2009.03.001

Kaufmann, H., Segl, K., Kuester, T., Rogass, C., Foerster, S., Wulf, H., Hofer, S., Sang, B., Storch, T., and Mueller, A. (2013, January 21–26). The Environmental Mapping and Analysis Program (EnMAP)—Present status of preparatory phase. Proceedings of the International Geoscience and Remote Sensing Symposium (IAGARSS’13), Melbourne, Australia.

Romano, F., Santini, F., Simoniello, T., Ananasso, C., Corsini, G., and Cuomo, V. (2013, January 21–26). The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’13), Melbourne, Australia.

Milton, 2009, Progress in field spectroscopy, Remote Sens. Environ., 113, 92, 10.1016/j.rse.2007.08.001

Asner, 2008, Remote sensing of native and invasive species in Hawaiian rainforests, Remote Sens. Environ., 112, 1912, 10.1016/j.rse.2007.02.043

Lewis, M.M. (2002, January 2–6). A strategy for mapping arid vegetation associations with hyperspectral imagery. Proceedings of Eleventh Australian Remote Sensing and Photogrammetry Conference, Brisbane, Australia.

Asner, 1998, Biophysical and biochemical sources of variability in canopy reflectance, Remote Sens. Environ., 64, 234, 10.1016/S0034-4257(98)00014-5

Clark, 2012, Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier, Remote Sens., 4, 1820, 10.3390/rs4061820

Bossler, J.D., McMaster, R.B., Rizos, C., and Campbell, J.B. (2010). Manual of Geospatial Sciences, Taylor and Francis. [2nd ed.]. Chapter 17.

Manakos, I., Manevski, K., Petropoulos, G.P., Elhag, M., and Kalaitzidis, C. (June, January 31). Development of a spectral library for Mediterranean land cover types. Proceedings of 30th EARSeL Symp.: Remote Sensing for Science, Education and Natural and Cultural Heritage, Paris, France.

Zomer, 2008, Building spectral libraries from wetlands land cover classification and hyperspectral remote sensing, J. Environ. Manag., 90, 2170, 10.1016/j.jenvman.2007.06.028

Ruby, 2002, Spectral signatures database for remote sensing applications, Proc. SPIE, 4816, 156, 10.1117/12.453793

Hueni, 2011, Data exchange between distributed spectral databases, Comput. Geosci., 37, 861, 10.1016/j.cageo.2010.12.009

Pfitzner, K., Bollhöfer, A., Esparon, A., Bartolo, B., and Staben, G. (2010, January 25–30). Standardized spectra (400–2500 nm) and associated metadata: An example from northern tropical Australia. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA.

Buddenbaum, 2012, Field Imaging spectroscopy of beech seedlings under dryness stress, Remote Sens., 4, 3721, 10.3390/rs4123721

Hruska, 2012, Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle, Remote Sens., 4, 2736, 10.3390/rs4092736

Nidamanuri, 2011, Use of field reflectance data for crop mapping using airborne hyperspectral image, ISPRS J. Photogramm. Remote Sens., 66, 683, 10.1016/j.isprsjprs.2011.05.001

Hueni, 2009, The spectral database SPECCHIO for improved long-term usability and datasharing, Comput. Geosci., 35, 557, 10.1016/j.cageo.2008.03.015

Rasaiah, 2014, Critical metadata for spectroscopy field campaigns, Remote Sens., 6, 3662, 10.3390/rs6053662

Amaro, 2014, Field spectroscopy metadata system based on ISO and OGC standards, ISPRS Int. J. Geo-Inf., 3, 1003, 10.3390/ijgi3031003

Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., and Limperis, T. (1977). Geometrical Considerations and Nomenclature for Reflectance, National Bureau of Standards, US Department of Commerce.

Thenkabail, P.S., Lyon, J.G., and Huete, A. (2011). Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor and Francis Group.

Miao, 2006, Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery linear spectral mixture models, Remote Sens. Environ., 101, 329, 10.1016/j.rse.2006.01.006

Dalmayne, 2014, Classification of grassland successional stages using airborne hyperspectral imagery, Remote Sens., 6, 7732, 10.3390/rs6087732

Roberts, 1998, Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models, Remote Sens. Environ., 65, 267, 10.1016/S0034-4257(98)00037-6

Manevski, 2011, Discrimination of common Mediterranean plant species using field spectroradiometry, Int. J. Appl. Earth Obs. Geoinf., 13, 922

Silvestry, 2003, Hyperspectral remote sensing of salt marsh vegetation, Phys. Chem. Earth., 28, 15, 10.1016/S1474-7065(03)00004-4

Kalacska, 2007, Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging Spectroscopy, Remote Sens. Environ., 108, 82, 10.1016/j.rse.2006.11.007

Somers, 2012, Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests, Remote Sens., 4, 2510, 10.3390/rs4092510

Fyfe, S.K. (2003). Spatial and temporal variation in spectral reflectance: Are seagrass species spectrally distinct?. Limnol. Oceanogr., 464–479.

SPECCHIO Online Spectral Database. Available online: http://www.specchio.ch.

Clark, 1984, Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329, 10.1029/JB089iB07p06329

Price, 1994, How unique are spectral signatures?, Remote Sens. Environ., 49, 181, 10.1016/0034-4257(94)90013-2

Jacquemoud, 2009, PROSPECT + SAIL models: A review of use for vegetation characterization, Remote Sens. Environ., 113, S56, 10.1016/j.rse.2008.01.026

Homayouni, S., and Roux, M. (2004, January 12–23). Hyperspectral Image analysis for material mapping using spectral matching. Proceedings of ISPRS Congress 2004, Istanbul, Turkey.

Kruse, 1993, The Spectral Image Processing System (SIPS)—Interactive visualization and analysis of imaging spectrometer data, Remote Sens. Environ., 44, 145, 10.1016/0034-4257(93)90013-N

International Organization for Standardization (ISO) (2003). Geographic Information—Metadata, International Organization for Standardization.

Mac Arthur, A., Alonso, L., Malthus, T., and Moreno, J. (2013, January 9–13). Spectroscopy field strategies and their effect on measurements of heterogeneous and homogeneous earth surfaces. Proceedings of the 2013 Living Planet Symposium, Edinburgh, UK.

MacLellan, 2012, The fields of view and directional response functions of two field spectroradiometers, IEEE Trans. Geosci. Remote Sens., 50, 3892, 10.1109/TGRS.2012.2185055

Salisbury, J.W. (1998). Spectral Measurements Field Guide, Defense Technology Information Centre. Tech. Rep. ADA362372.

Jonkheere, 2004, Review of in-situ methods of leaf area index determination. Part I. Theories, sensors and hemispherical photography, Agric. For. Meteorol., 121, 19, 10.1016/j.agrformet.2003.08.027

Thenkabail, A., Lyon, P.S., and Huete, J.G. (2011). Hyperspectral Remote Sensing of Vegetation, CRC Press.

Thenkabail, A., Lyon, P.S., and Huete, J.G. (2011). Hyperspectral Remote Sensing of Vegetation, CRC Press.

Schmidt, 2004, Smoothing vegetation spectra with wavelets, Int. J. Remote Sens., 25, 1167, 10.1080/0143116031000115085

García Novo, F., and Marín Cabrera, C. (2005). Doñana: Agua y Biosfera, Ministerio de Medio Ambiente.

2005, Multiscale control of vegetation patterns: The case of Doñana (SW Spain), Lands. Eco., 20, 51, 10.1007/s10980-004-0466-x

Zunzunegui, 2005, To live or to survive in Doñana dunes: Adaptive responses of woody species under a Mediterranean climate, Plant Soil, 273, 77, 10.1007/s11104-004-6806-4

Gratani, 2004, Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin, Photosynthetica, 42, 551, 10.1007/S11099-005-0012-3

2004, Seasonal differences in photochemical efficiency and chlorophyll and carotenoid contents in six Mediterranean shrub species under field conditions, Photosynthetica, 42, 309

Chen, 1994, Quantifying the effect of canopy architecture on optical measurements of leaf area index using two gap size analysis methods, IEEE Trans. Geosci. Remote Sens., 33, 777, 10.1109/36.387593

Sweet, J., Granahan, J., and Sharp, M. (2000, January 23–25). An objective standard for hyperspectral image quality. Proceedings of AVIRIS Workshop, Jet Propulsion Laboratory, Pasadena, CA, USA.

Jimenez, 2011, Cartografía de especies de matorral de la Reserva Biológica de Doñana mediante el sistema hiperespectral aeroportado INTA-AHS: Implicaciones en el seguimiento y estudio del matorral de Doñana, Revis. de Teledetec., 36, 98