Towards RF graphene devices: A review

FlatChem - Tập 35 - Trang 100409 - 2022
Ivo Colmiais1,2, Vitor Silva1,2, Jérôme Borme2, Pedro Alpuim2,3, Paulo M. Mendes1
1CMEMS – Center for Microelectromechanical Systems, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
2INL – International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
3Center of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Tài liệu tham khảo

Lee, 2014, Nanoelectronic circuits based on two-dimensional atomic layer crystals, Nanoscale, 6, 13283, 10.1039/C4NR03670K Zhu, 2009, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Phys. Rev. B - Condens. Matter Mater. Phys., 80, 1, 10.1103/PhysRevB.80.235402 Silicon electrical properties, (n.d.). https://www.azom.com/article.aspx?ArticleID=8346 (accessed October 27, 2019). Bolotin, 2008, Temperature-dependent transport in suspended graphene, Phys. Rev. Lett., 101, 1, 10.1103/PhysRevLett.101.096802 Shishir, 2009, Velocity saturation in intrinsic graphene, J. Phys.: Condens. Matter, 21, 344201 Feijoo, 2020, Does carrier velocity saturation help to enhance: F maxin graphene field-effect transistors?, Nanoscale Adv., 2, 4179, 10.1039/C9NA00733D Castro Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Lee, 2018, A review of doping modulation in graphene, Synth. Met., 244, 36, 10.1016/j.synthmet.2018.07.001 Jeon, 2009, Radio-frequency electrical characteristics of single layer graphene, Jpn. J. Appl. Phys., 48, 0916011, 10.1143/JJAP.48.091601 Novoselov, 2012, A roadmap for graphene, Nature, 490, 192, 10.1038/nature11458 Pandey, 2017, Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7, Biosens. Bioelectron., 91, 225, 10.1016/j.bios.2016.12.041 Liu, 2018, Highly sensitive and selective potassium ion detection based on graphene hall effect biosensors, Materials (Basel)., 11, 1 Fu, 2017, Sensing at the Surface of Graphene Field-Effect Transistors, Adv. Mater., 29, 1603610, 10.1002/adma.201603610 Haslam, 2018, Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker, Diagnostics., 8, 5, 10.3390/diagnostics8010005 Li, 2014, Graphene Inductors for High-Frequency Applications – Design, Fabrication, Characterization, and Study of Skin Effect, IEDM, Tech. Dig. - Int. Electron Devices Meet., 120 Liao, 2010, High-speed graphene transistors with a self-aligned nanowire gate, Nature, 467, 305, 10.1038/nature09405 Cheng, 2012, High-frequency self-aligned graphene transistors with transferred gate stacks, Proc. Natl. Acad. Sci. U.S.A, 109, 11588, 10.1073/pnas.1205696109 Ghosh, 2021, Transmittive-type triple-band linear to circular polarization conversion in THz region using graphene-based metasurface, Opt. Commun., 480, 10.1016/j.optcom.2020.126480 Kim, 2011, A role for graphene in silicon-based semiconductor devices, Nature, 479, 338, 10.1038/nature10680 J. Jiang, J.H. Chu, K. Banerjee, CMOS-Compatible Doped-Multilayer-Graphene Interconnects for Next-Generation VLSI, (2018) 799–802. Reddy, 2012, Graphene field-effect transistors, J. Phys. D Appl. Phys., 45, 019501, 10.1088/0022-3727/45/1/019501 Kang, 2018, On-chip intercalated-graphene inductors for next-generation radio frequency electronics, Nat. Electron., 1, 46, 10.1038/s41928-017-0010-z Wang, 2017, Q -factors of CVD monolayer graphene and graphite inductors, J. Phys. D Appl. Phys., 50, 345103, 10.1088/1361-6463/aa78b5 Z. Pan, X. Ji, M. Li, Z. Ye, Y. Wang, Modeling RF Behavior of Graphene up to 67GHz, 2014 IEEE MTT-S Int. Microw. Symp. 1 (2014) 1–4. https://doi.org/10.1109/MWSYM.2014.6848365. Y. Zhang, R. Ma, X. Zhen, Y. Kudva, P. Buhlmann, S.J. Koester, Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors, (2017). https://doi.org/10.1021/acsami.7b14864. C.F. Moldovan, W.A. Vitale, M. Tamagnone, J.R. Mosig, A.M. Ionescu, Graphene Quantum Capacitors for High-Q Tunable LC-tanks for RF ICs, 2016 46th Eur. Solid-State Device Res. Conf. (2016) 345–348. https://doi.org/10.1109/ESSDERC.2016.7599657. Moldovan, 2016, Graphene Quantum Capacitors for High Frequency Tunable Analog Applications, Nano Lett., 16, 4746, 10.1021/acs.nanolett.5b05235 Zhang, 2021, A Tunable Resonant Circuit Based on Graphene Quantum Capacitor, Adv. Electron. Mater., 2001009, 1 Akbari, 2016, Fabrication and Characterization of Graphene Antenna for Low-Cost and Environmentally Friendly RFID Tags, IEEE Antennas Wirel. Propag. Lett., 15, 1569, 10.1109/LAWP.2015.2498944 Scidà, 2018, Application of graphene-based flexible antennas in consumer electronic devices, Mater. Today, 21, 223, 10.1016/j.mattod.2018.01.007 Jaakkola, 2019, Near-Field UHF RFID Transponder with a Screen-Printed Graphene Antenna, IEEE Trans. Components, Packag. Manuf. Technol., 9, 616, 10.1109/TCPMT.2019.2902322 Goyal, 2018, Design of a graphene-based patch antenna on glass substrate for high-speed terahertz communications, Microw. Opt. Technol. Lett., 60, 1594, 10.1002/mop.31216 Rodrigues, 2018, Smart Terahertz Graphene Antenna: Operation as an Omnidirectional Dipole and as a Reconfigurable Directive Antenna, IEEE Antennas Propag. Mag., 60, 26, 10.1109/MAP.2018.2859169 Esquius-Morote, 2014, Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz, IEEE Trans. Terahertz Sci. Technol., 4, 116, 10.1109/TTHZ.2013.2294538 Dragoman, 2010, Terahertz antenna based on graphene, J. Appl. Phys., 107, 1, 10.1063/1.3427536 Oh, 2018, RF Loss Characteristics of Coplanar Waveguide Employing Chemically Modified Graphene on Flexible Substrates, Trans. Electr. Electron. Mater., 19, 81, 10.1007/s42341-018-0019-7 Awan, 2016, Transport conductivity of graphene at RF and microwave frequencies, 2D Mater., 3, 015010, 10.1088/2053-1583/3/1/015010 Capmany, 2014, Silicon graphene waveguide tunable broadband microwave photonics phase shifter, Opt. Express, 22, 8094, 10.1364/OE.22.008094 X. Song, X. Dai, Y. Xiang, Graphene Based Waveguides, in: Emerg. Waveguide Technol., InTech, 2018: p. 13. https://doi.org/10.5772/intechopen.76796. A. Biabanifard, M, Biabanifard, S, Javad Hosseini, S, Jahanshiri, Design and Comparison of Terahertz Graphene Antenna: Ordinary dipole, Fractal dipole, Spiral, Bow-tie and Log-periodic, Eng Technol Open Acc. 2 (2018). Li, 2017, High-Frequency Analysis of Intercalated Multilayer Graphene (IMLG) and Implication for Tunable Terahertz Resonator Design, IEEE Access, 5, 7532, 10.1109/ACCESS.2017.2701506 Wang, 2019, High-performance printable 2.4 GHz graphene-based antenna using water-transferring technology, Sci. Technol. Adv. Mater., 20, 870, 10.1080/14686996.2019.1653741 Inum, 2017, Performance analysis of graphene based nano dipole antenna on stacked substrate, ICECTE 2016–2nd Int, Conf. Electr. Comput. Telecommun. Eng., 1 Fang, 2012, Plasmon-induced doping of graphene, ACS Nano, 6, 10222, 10.1021/nn304028b Fang, 2012, Graphene-antenna sandwich photodetector, Nano Lett., 12, 3808, 10.1021/nl301774e Mencarelli, 2013, Design of a coplanar graphene-based nano-patch antenna for microwave application, IEEE MTT-S Int. Microw. Symp. Dig., 1 Dragoman, 2015, A tunable microwave slot antenna based on graphene, Appl. Phys. Lett., 106, 153101, 10.1063/1.4917564 Huang, 2020, Graphene-Driven Metadevice for Active Microwave Camouflage with High-Efficiency Transmission Window, Small, Methods, 2000918, 1 Huang, 2021, Simultaneous Control of Absorbing Frequency and Amplitude Using Graphene Capacitor and Active Frequency Selective Surface, IEEE Trans. Antennas Propag., 69, 1793, 10.1109/TAP.2020.3011115 Huang, 2015, Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications, Sci. Rep., 5, 1, 10.1038/srep18298 Kim, 2018, Graphene-based optical waveguide tactile sensor for dynamic response, Sci. Rep., 8, 1 Nam, 1997, High-performance planar inductor on thick oxidized porous silicon (OPS) substrate, IEEE Microw. Guid. Wave Lett., 7, 236, 10.1109/75.605489 P. Carazzetti, M.-A. Dubois, N.-F. de Rooij, High-performance micromachined RF planar iductors, in: 13th Int. Conf. Solid-State Sensors, Actuators Microsystems, 2005. Dig. Tech. Pap. TRANSDUCERS ’05., IEEE, 2010: pp. 1084–1087. https://doi.org/10.1109/SENSOR.2005.1496644. López-villegas, 2000, Improvement of the Quality Factor of RF Integrated Inductors by Layout, Optimization, 48, 76 Hailu, 2017, High quality factor RF MEMS tunable capacitor, Microsyst. Technol., 23, 3719, 10.1007/s00542-016-3181-z Khan, 2019, Experimental investigation of actuation in a micromachined electrically floating tunable capacitor, Microelectron. Eng., 213, 31, 10.1016/j.mee.2019.02.007 Liu, 2019, Fabrication of a Tunable Capacitor with a Non-Planar Plate by Using Titanium and Polyimide as Sacrificial Layers, Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 863 Sarkar, 2011, High-frequency behavior of graphene-based interconnects-Part I: Impedance modeling, IEEE Trans. Electron Devices, 58, 843, 10.1109/TED.2010.2102031 Sarkar, 2011, High-frequency behavior of graphene-based interconnect-sPart II: Impedance analysis and implications for inductor design, IEEE Trans. Electron Devices, 58, 853, 10.1109/TED.2010.2102035 Moldovan, 2016, Graphene Quantum Capacitors for High Frequency Tunable Analog Applications - Supplementary, Information, 16, 4746 L. Anzi, A. Mansouri, P. Pedrinazzi, E. Guerriero, M. Fiocco, A. Pesquera, A. Centeno, A. Zurutuza, A. Behnam, E.A. Carrion, E. Pop, R. Sordan, Ultra-low contact resistance in graphene devices at the Dirac point, 2D Mater. 5 (2018). https://doi.org/10.1088/2053-1583/aaab96. Cusati, 2017, Electrical properties of graphene-metal contacts /639/301/1005/1007 /639/925/927/1007 /119 /119/118 /120 /128 article, Sci. Rep., 7, 1, 10.1038/s41598-017-05069-7 Smith, 2013, Reducing contact resistance in graphene devices through contact area patterning, ACS Nano, 7, 3661, 10.1021/nn400671z Traversi, 2009, Integrated complementary graphene inverter, Appl. Phys. Lett., 94, 1, 10.1063/1.3148342 Guerriero, 2013, Gigahertz integrated graphene ring oscillators, ACS Nano, 7, 5588, 10.1021/nn401933v Wang, 2010, Graphene-based ambipolar RF mixers, IEEE Electron Device Lett., 31, 906, 10.1109/LED.2010.2052017 Bianchi, 2015, Scaling of graphene integrated circuits, Nanoscale., 7, 8076, 10.1039/C5NR01126D Han, 2014, Graphene radio frequency receiver integrated circuit, Nat. Commun., 5, 1, 10.1038/ncomms4086 P. Peng, Z. Wang, Z. Wei, Z. Tian, M. Li, L. Ren, Y. Fu, A. Fabrication, G. Rf, Radio-frequency Power Amplifier Based on CVD Graphene Field-effect Transistor, (2019). Han, 2011, High-frequency graphene voltage amplifier, Nano Lett., 11, 3690, 10.1021/nl2016637 Rodriguez, 2012, RF performance projections of graphene FETs vs. silicon MOSFETs, ECS Solid State Lett., 1, 39, 10.1149/2.001205ssl Liao, 2012, Graphene for radio frequency electronics, Mater. Today, 15, 328, 10.1016/S1369-7021(12)70138-4 Feijoo, 2016, Short channel effects in graphene-based field effect transistors targeting radio-frequency applications, 2D Mater., 3, 1, 10.1088/2053-1583/3/2/025036 Lyu, 2016, Deep-submicron Graphene Field-Effect Transistors with State-of-Art fmax, Sci. Rep., 6, 10.1038/srep35717 G. Vincenzi, G. Deligeorgis, F. Coccetti, P. Pons, G. Vincenzi, G. Deligeorgis, F. Coccetti, P.P. Open-thru, H.A.L. Id, G. Vincenzi, G. Deligeorgis, F. Coccetti, P. Pons, Open-Thru de-embedding for Graphene RF devices To cite this version : Open-Thru de-embedding for Graphene RF devices, (2014). Badmaev, 2012, Self-aligned fabrication of graphene rf transistors with t-shaped gate, ACS Nano, 6, 3371, 10.1021/nn300393c Khelifi, 2017, Pad-open-short de-embedding method extended for 3-port devices and non-ideal standards, 89th ARFTG Microw, Meas. Conf. Adv. Technol. Commun. ARFTG, 2017, 3 Lemme, 2007, A graphene field-effect device, IEEE Electron Device Lett., 28, 282, 10.1109/LED.2007.891668 P.A. Y.Q. Wu, Y.-M. Lin, K.A. Jenkins, J.A. Ott, C. Dimitrakopoulos, D.B. Farmer, F. Xia, A. Grill, RF Performance of Short Channel Graphene Field-Effect Transistor, in: 2010 Int. Electron Devices Meet., 2010: pp. 122–125. Xu, 2011, Top-Gated Graphene Field-Effect Transistors with High Normalized Dirac Point Voltage, ACS Nano, 5, 5031, 10.1021/nn201115p Yeh, 2019, Gigahertz Field-Effect Transistors with CMOS-Compatible Transfer-Free Graphene, ACS Appl. Mater. Interfaces, 11, 6336, 10.1021/acsami.8b16957 Feng, 2014, An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors, Carbon N. Y., 75, 249, 10.1016/j.carbon.2014.03.060 Wei, 2017, Graphene field effect transistors with optimized contact resistance for current gain, Device Res, Conf. - Conf. Dig. DRC., 5, 2016 P.A. and Y.-M.L. Y. Q. Wu, D. B. Farmer, A. Valdes-Garcia, W. J. Zhu, K.A. Jenkins, C. Dimitrakopoulos, Record High RF Performance for Epitaxial Graphene Transistors, in: Electron Devices Meet. (IEDM), Int., 2011: pp. 3690–3693. https://doi.org/10.1109/IEDM.2011.6131601. Kim, 2009, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric, Appl. Phys. Lett., 94, 062107, 10.1063/1.3077021 Q. Gao, X. Xiong, X. Li, Y. Wu, High Performance Double-Gate Graphene Radio-Frequency Transistors, (n.d.) 2–3. Wang, 2012, Fabrication of Self-Aligned Graphene FETs with Low Fringing Capacitance and Series Resistance, ISRN Electron., 2012, 1, 10.5402/2012/891480 Lee, 2019, Advantages of a buried-gate structure for graphene field-effect transistor, Semicond. Sci. Technol., 34, 055010, 10.1088/1361-6641/ab0d54 Han, 2013, Multifinger embedded T-shaped gate graphene RF transistors with high ratio, IEEE Electron Device Lett., 34, 1340, 10.1109/LED.2013.2276038 Wu, 2016, 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors, Appl. Mater. Interfaces., 8, 25645, 10.1021/acsami.6b05791 Meric, 2010, Graphene field-effect transistors based on boron nitride gate dielectrics, Tech. Dig. - Int. Electron Devices Meet. IEDM., 556 Wang, 2011, BN/Graphene/BN transistors for RF applications, IEEE Electron Device Lett., 32, 1209, 10.1109/LED.2011.2160611 Liao, 2012, Scalable fabrication of self-aligned graphene transistors and circuits on glass, Nano Lett., 12, 2653, 10.1021/nl201922c Passi, 2017, Review on analog/radio frequency performance of advanced silicon MOSFETs, Semicond. Sci. Technol., 32, 123004, 10.1088/1361-6641/aa9145 Lee, 2007, Record RF performance of 45-nm SOI CMOS technology, Tech. Dig. - Int. Electron Devices Meet. IEDM., 255 Lin, 2016, Record maximum transconductance of 3.45 mS/μm for III-V FETs, IEEE Electron Device Lett., 37, 381, 10.1109/LED.2016.2529653 Tsividis, 1999, Operation and Modeling of the MOS, Transistor. Meric, 2008, Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nat. Nanotechnol., 3, 654, 10.1038/nnano.2008.268 Umoh, 2014 Pasadas, 2016, Large-Signal Model of Graphene Field-Effect Transistors - Part I: Compact Modeling of GFET Intrinsic Capacitances, IEEE Trans. Electron Devices, 63, 2936, 10.1109/TED.2016.2570426 Pasadas, 2016, Large-Signal Model of Graphene Field- Effect Transistors - Part II: Circuit Performance Benchmarking, IEEE Trans. Electron Devices, 63, 2942, 10.1109/TED.2016.2563464 F. Pasadas, W. Wei, E. Pallecchi, H. Happy, D. Jiménez, Small - signal model for 2D - material based field - effect transistors targeting radio - frequency applications : the importance of charge conservation, (2017) 1–8. Thingujam, 2017, Study and design of Graphene Field Effect Transistor for RF performance, 308 Anteroinen, 2015, Graphene Transistors -Challenges and Opportunities, 89 Sabir, 2018, Modeling and Characterization of a Top Gated Graphene FET for RF Applications, Proc. Natl. Acad. Sci. India Sect. A - Phys. Sci., 88, 317, 10.1007/s40010-017-0408-z Lu, 2017, A review for compact model of graphene field-effect transistors, Chinese Phys. B., 26, 036804, 10.1088/1674-1056/26/3/036804 Sang, 2018, Device and compact circuit-level modeling of graphene field-effect transistors for RF and microwave applications, IEEE Trans, Circuits Syst. I Regul. Pap., 65, 2559, 10.1109/TCSI.2018.2793852 Jmai, 2021, 2D electronics based on graphene field effect transistors: Tutorial for modelling and simulation, Micromachines, 12, 979, 10.3390/mi12080979 Graphene Radio-Frequency Transistors with Self-Aligned Channel and Core-Shell Nanowire Gate, in: ACS Nano, 2013. Bunch, 2007, Electromechanical Resonators from Graphene Sheets, Science, 315, 490, 10.1126/science.1136836 Chen, 2013, Graphene mechanical oscillators with tunable frequency, Nat. Nanotechnol., 8, 923, 10.1038/nnano.2013.232 Li, 2010, Low operating bias and matched input-output characteristics in graphene logic inverters, Nano Lett., 10, 2357, 10.1021/nl100031x Gilardi, 2019, Graphene–Si CMOS oscillators, Nanoscale, 11, 3619, 10.1039/C8NR07862A Liu, 2016, A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature, Nat. Nanotechnol., 11, 845, 10.1038/nnano.2016.108 Qian, 2013, Single transistor oscillator based on a Graphene-Aluminum Nitride nano plate resonator, 2013 Jt, Eur. Freq. Time Forum Int. Freq. Control Symp. EFTF/IFC, 559 Kougianos, 2015, Multi-swarm optimization of a graphene FET based voltage controlled oscillator circuit, Proc. IEEE Comput. Soc. Annu. Symp. VLSI, ISVLSI., 07–10-July, 567 Yao, 2000, RF MEMS from a device perspective, J. Micromech. Microeng., 10, R9, 10.1088/0960-1317/10/4/201 Davidovikj, 2018, On-chip Heaters for Tension Tuning of Graphene Nanodrums, Nano Lett., 18, 2852, 10.1021/acs.nanolett.7b05358 Haidar, 2019, A single layer spin-orbit torque nano-oscillator, Nat. Commun., 10, 10.1038/s41467-019-10120-4 Tarequzzaman, 2019, Spin torque nano-oscillator driven by combined spin injection from tunneling and spin Hall current, Commun. Phys., 2, 1, 10.1038/s42005-019-0119-7 Demidov, 2012, Magnetic nano-oscillator driven by pure spin current, Nat. Mater., 11, 1028, 10.1038/nmat3459 J. Sampaio, N. Reyren, V. Cros, J. Kim, A skyrmion-based spin-torque nano-oscillator, (2016). Wang, 2010, A high-performance top-gate graphene field-effect transistor based frequency doubler, Appl. Phys. Lett., 96, 173104, 10.1063/1.3413959 Liang, 2015, High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits, Nanoscale., 7, 10954, 10.1039/C5NR02292D Ram, 2012, Three-Gigahertz Graphene Frequency Doubler on Quartz Operating Beyond the Transit Frequency, IEEE Trans. Nanotechnol., 11, 877, 10.1109/TNANO.2012.2203826 Chen, 2012, Graphene-Based Frequency Tripler, Nano Lett., 12, 2067, 10.1021/nl300230k Cheng, 2016, A Pure Frequency Tripler Based on CVD Graphene, IEEE Electron Device Lett., 37, 785 Cheng, 2017, A graphene based frequency quadrupler, Sci. Rep., 7 Lin, 2011, Wafer-Scale Graphene Integrated Circuit, Science, 332, 1294, 10.1126/science.1204428 Gao, 2017, Short-Channel Graphene Mixer with High Linearity, IEEE Electron Device Lett., 38, 1168, 10.1109/LED.2017.2718732 Wang, 2012, Graphene electronics for RF applications, IEEE Microw. Mag., 13, 114, 10.1109/MMM.2012.2189035 Fadil, 2020, A broadband active microwave monolithically integrated circuit balun in graphene technology, Appl. Sci., 10, 2183, 10.3390/app10062183 N. Singh, S. Kumar, B.K. Kanaujia, M.T. Beg, Mainuddin, S. Kumar, A compact and efficient graphene FET based RF energy harvester for green communication, AEU - Int. J. Electron. Commun. 115 (2020) 153059. https://doi.org/10.1016/j.aeue.2019.153059. Shaygan, 2017, High performance metal-insulator-graphene diodes for radio frequency power detection application, Nanoscale., 9, 11944, 10.1039/C7NR02793A V.B. Sahu, P.G. Pawar, A. Gajarushi, Effect of high K dielectric on mobility of graphene FET, Int. Conf. Work. Emerg. Trends Technol. 2011, ICWET 2011 - Conf. Proc. (2011) 1148–1149. https://doi.org/10.1145/1980022.1980268. Zhuang, 2021, Ways to eliminate PMMA residues on graphene —— superclean graphene, Carbon N. Y., 173, 609, 10.1016/j.carbon.2020.11.047 Tran, 2018, Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications, Adv. Colloid Interface Sci., 261, 41, 10.1016/j.cis.2018.09.003 Avsar, 2011, Toward wafer scale fabrication of graphene based spin valve devices, Nano Lett., 11, 2363, 10.1021/nl200714q Pirkle, 2011, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Appl. Phys. Lett., 99, 2009, 10.1063/1.3643444 Dai, 2011, Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene, Nat. Commun., 2, 10.1038/ncomms1539 Lin, 2012, Graphene annealing: How clean can it be?, Nano Lett., 12, 414, 10.1021/nl203733r Barin, 2015, Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on grapheme final performance, Carbon N. Y., 84, 82, 10.1016/j.carbon.2014.11.040 Li, 2009, Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 9, 4359, 10.1021/nl902623y Jia, 2016, Toward High Carrier Mobility and Low Contact Resistance: Laser Cleaning of PMMA Residues on Graphene Surfaces, Nano-Micro Lett., 8, 336, 10.1007/s40820-016-0093-5 Ahn, 2016, Thermal annealing of graphene to remove polymer residues, Mater. Express., 6, 69, 10.1166/mex.2016.1272 Shautsova, 2016, Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene, Sci. Rep., 6, 1, 10.1038/srep30210 Lee, 2013, Chan Jun, Clean transfer of graphene and its effect on contact resistance, Appl. Phys. Lett., 103, 103104, 10.1063/1.4819740 Yang, 2020, Removing contaminants from transferred CVD graphene, Nano Res., 13, 599, 10.1007/s12274-020-2671-6 Vervuurt, 2017, Atomic Layer Deposition for Graphene Device Integration, Adv. Mater. Interfaces, 4, 1, 10.1002/admi.201700232 Robertson, 2006, High dielectric constant gate oxides for metal oxide Si transistors, Reports, Prog. Phys., 69, 327, 10.1088/0034-4885/69/2/R02 Giambra, 2019, Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study, ACS Omega, 4, 2256, 10.1021/acsomega.8b02836 Fallahazad, 2012, Scaling of Al 2O 3 dielectric for graphene field-effect transistors, Appl. Phys. Lett., 100, 10, 10.1063/1.3689785 Xiao, 2017, Atomic-layer-deposition growth of an ultrathin HfO2 film on graphene, ACS Appl. Mater. Interfaces, 9, 34050, 10.1021/acsami.7b09408 Lee, 2010, Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices, Appl. Phys. Lett., 97, 043107, 10.1063/1.3467454 Williams, 2007, Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene, Science, 317, 638, 10.1126/science.1144657 Meric, 2011, Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements, Nano Lett., 11, 1093, 10.1021/nl103993z Wang, 2008, Atomic layer deposition of metal oxides on pristine and functionalized graphene, J. Am. Chem. Soc., 130, 8152, 10.1021/ja8023059 Snure, 2020, Two-dimensional BN buffer for plasma enhanced atomic layer deposition of Al2O3 gate dielectrics on graphene field effect transistors, Sci. Rep., 10, 1, 10.1038/s41598-020-71108-5 Song, 2012, Determination of work function of graphene under a metal electrode and its role in contact resistance, Nano Lett., 12, 3887, 10.1021/nl300266p Balci, 2012, Rapid thermal annealing of graphene-metal contact, Appl. Phys. Lett., 101, 243105, 10.1063/1.4769817 Li, 2013, Ultraviolet/ozone treatment to reduce metal-graphene contact resistance, Appl. Phys. Lett., 102, 183110, 10.1063/1.4804643 Min Song, 2014, Improvement of graphene-metal contact resistance by introducing edge contacts at graphene under metal, Appl. Phys. Lett., 104, 183506, 10.1063/1.4875709 Leong, 2014, Low-contact-resistance graphene devices with nickel-etched-graphene contacts, ACS Nano, 8, 994, 10.1021/nn405834b Zhang, 2019, Improved contact resistivity and enhanced mobility of metal-graphene FET by inserting ultra-thin MoOx layer at source/drain region, AIP Adv., 9, 055221, 10.1063/1.5100198 Gong, 2012, Metal-graphene-metal sandwich contacts for enhanced interface bonding and work function control, ACS Nano, 6, 5381, 10.1021/nn301241p Liu, 2013, A study on graphene-metal contact, Crystals, 3, 257, 10.3390/cryst3010257 Nagashio, 2010, Contact resistivity and current flow path at metal/graphene contact, Appl. Phys. Lett., 97, 8, 10.1063/1.3491804 Moon, 2012, Ultra-low resistance ohmic contacts in graphene field effect transistors, Appl. Phys. Lett., 100, 2010, 10.1063/1.4719579 Wang, 2013, One-Dimensional Electrical Contact to a Two-Dimensional Material, Science, 342, 614, 10.1126/science.1244358 Xia, 2011, The origins and limits of metal-graphene junction resistance, Nat. Nanotechnol., 6, 179, 10.1038/nnano.2011.6 Ramón, 2014, Impact of contact and access resistances in graphene field-effect transistors on quartz substrates for radio frequency applications, Appl. Phys. Lett., 104, 073115, 10.1063/1.4866332 Farmer, 2010, Graphene field-effect transistors with self-aligned gates, Appl. Phys. Lett., 97, 2008, 10.1063/1.3459972 Movva, 2012, Self-aligned graphene field-effect transistors with polyethyleneimine doped source/drain access regions, Appl. Phys. Lett., 101, 183113, 10.1063/1.4765658 Misra, 2005, High-k Gate dielectrics, High-K Gate Dielectr., 14, 30