Hướng tới tương tác giữa con người và phương tiện: Phân tích rủi ro lái xe dưới các trạng thái cảnh giác khác nhau của người lái và phương pháp phát hiện rủi ro lái xe

Automotive Innovation - Tập 6 - Trang 32-47 - 2023
Yingzhang Wu1, Jie Zhang2, Wenbo Li3, Yujing Liu1, Chengmou Li1, Bangbei Tang4, Gang Guo1
1College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
2Chongqing Changan Automobile Corporation Ltd., Chongqing, China
3School of Vehicle and Mobility, Tsinghua University, Beijing, China
4School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Chongqing, China

Tóm tắt

Hành vi của người lái xe đóng một vai trò quan trọng trong an toàn giao thông. Người ta thường công nhận rằng cảnh giác của người lái là một yếu tố chính góp phần gây ra tai nạn giao thông. Tuy nhiên, tác động định lượng của cảnh giác lái xe đối với rủi ro lái xe vẫn chưa được khám phá đầy đủ. Nghiên cứu này nhằm điều tra mối quan hệ giữa cảnh giác lái xe và rủi ro lái xe, sử dụng dữ liệu ghi lại từ 28 tài xế duy trì tốc độ 80 km/h trên một tuyến đường cao tốc đơn điệu trong 2 giờ. Phương pháp k-means và phương pháp phù hợp tuyến tính được sử dụng để phân tích phân bố rủi ro lái xe dưới các trạng thái cảnh giác lái xe khác nhau. Ngoài ra, nghiên cứu này đề xuất một khung nghiên cứu để phân tích rủi ro lái xe và phát triển ba mô hình phân loại (KNN, SVM và DNN) để nhận diện trạng thái rủi ro lái xe. Kết quả cho thấy tần suất của các sự cố rủi ro thấp có tương quan âm với mức độ cảnh giác của người lái, trong khi tần suất của các sự cố rủi ro vừa và cao có tương quan dương với mức độ cảnh giác của người lái. Mô hình DNN đạt hiệu suất tốt nhất với độ chính xác 0.972, độ hồi tưởng 0.972, độ chính xác 0.973 và f1-score 0.972, so với KNN và SVM. Nghiên cứu này có thể phục vụ như một tài liệu tham khảo quý giá cho việc thiết kế các hệ thống cảnh báo và phương tiện thông minh.

Từ khóa

#cảnh giác lái xe #rủi ro lái xe #phân tích rủi ro #mô hình phân loại #hệ thống cảnh báo

Tài liệu tham khảo

Li, W., Cui, Y., Ma, Y., Chen, X., Li, G., Zeng, G., Guo, G., Cao, D.: A spontaneous driver emotion facial expression (DEFE) dataset for intelligent vehicles: emotions triggered by video-audio clips in driving scenarios. IEEE Trans. Affect. Comput. (2021). https://doi.org/10.1109/TAFFC.2021.3063387 Li, W., Zeng, G., Zhang, J., Xu, Y., Xing, Y., Zhou, R., Guo, G., Shen, Y., Cao, D., Wang, F. Y.: CogEmoNet: a cognitive-feature-augmented driver emotion recognition model for smart cockpit. IEEE Trans. Comput. Soc. Syst. 9(3), 667–678 (2021). https://doi.org/10.1109/TCSS.2021.3127935 Organization, W.H.: Global status report on road safety 2018: Summary. World Health Organization, Technical report (2018) Ryan, M.: The future of transportation: ethical, legal, social and economic impacts of self-driving vehicles in the year 2025. Sci. Eng. Ethics 26(3), 1185–1208 (2020). https://doi.org/10.1007/s11948-019-00130-2 The Ministry of Public Security of the People’s Republic of China: In 2021, the National Motor Vehicle Ownership Has Reached 395 Million, and New Energy Vehicles Have Increased by 59.25% Year-on-Year (2022). https://www.mps.gov.cn/n2254314/n6409334/c8322353/content.html Staubach, M.: Factors correlated with traffic accidents as a basis for evaluating advanced driver assistance systems. Accid. Anal. Prev. 41(5), 1025–1033 (2009). https://doi.org/10.1016/j.aap.2009.06.014 Khattak, A.J., Ahmad, N., Wali, B., Dumbaugh, E.: A taxonomy of driving errors and violations: evidence from the naturalistic driving study. Accid. Anal. Prev. 151, 105873 (2021). https://doi.org/10.1016/j.aap.2020.105873 Siordia, O.S., Martín de Diego, I., Conde, C., Reyes, G., Cabello, E.: Driving risk classification based on experts evaluation. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 1098–1103 (2010). https://doi.org/10.1109/IVS.2010.5548130 Pylkkönen, M., Sihvola, M., Hyvärinen, H.K., Puttonen, S., Hublin, C., Sallinen, M.: Sleepiness, sleep, and use of sleepiness countermeasures in shift-working long-haul truck drivers. Accid. Anal. Prev. 80, 201–210 (2015). https://doi.org/10.1016/j.aap.2015.03.031 Evans, L.: The dominant role of driver behavior in traffic safety. Am. J. Public Health 86(6), 784–786 (1996) Ortiz, C., Ortiz-Peregrina, S., Castro, J.J., Casares-López, M., Salas, C.: Driver distraction by smartphone use (WhatsApp) in different age groups. Accid. Anal. Prev. 117, 239–249 (2018). https://doi.org/10.1016/j.aap.2018.04.018 Oviedo-Trespalacios, O., Truelove, V., Watson, B., Hinton, J.A.: The impact of road advertising signs on driver behaviour and implications for road safety: a critical systematic review. Transp. Res. Pt. A-Policy Pract. 122, 85–98 (2019). https://doi.org/10.1016/j.tra.2019.01.012 Pawar, N.M., Velaga, N.R.: Modelling the influence of time pressure on reaction time of drivers. Transp. Res. Pt. F-Traffic Psychol. Behav. 72, 1–22 (2020). https://doi.org/10.1016/j.trf.2020.04.017 Li, W., Zhang, B., Wang, P., Sun, C., Zeng, G., Tang, Q., Guo, G., Cao, D.: Visual-attribute-based emotion regulation of angry driving behaviours. IEEE Intell. Transp. Syst. Mag. 14(3), 10–28 (2021). https://doi.org/10.1109/MITS.2021.3050890 Qu, W., Zhang, W., Ge, Y.: The moderating effect of delay discounting between sensation seeking and risky driving behavior. Saf. Sci. 123, 104558 (2020). https://doi.org/10.1016/j.ssci.2019.104558 Kang, H. B.: Various approaches for driver and driving behavior monitoring: a review. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 616–623 (2013) Kuo, J., Lenné, M.G., Mulhall, M., Sletten, T., Anderson, C., Howard, M., Rajaratnam, S., Magee, M., Collins, A.: Continuous monitoring of visual distraction and drowsiness in shift-workers during naturalistic driving. Saf. Sci. 119, 112–116 (2019). https://doi.org/10.1016/j.ssci.2018.11.007 Desai, A.V., Haque, M.A.: Vigilance monitoring for operator safety: a simulation study on highway driving. J. Saf. Res. 37(2), 139–147 (2006) Hoddes, E., Dement, W., Zarcone, V.: The development and use of the Stanford Sleepiness Scale (SSS). Psychophysiology 9, 150–162 (1972) Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., Dement, W.C.: Quantification of sleepiness: a new approach. Psychophysiology 10(4), 431–436 (1973) Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M.: STOP, THAT and One Hundred Other Sleep Scales. Springer, New York, NY (2012) Chandrakumar, D., Dorrian, J., Banks, S., Keage, H.A., Coussens, S., Gupta, C., Centofanti, S., Stepien, J., Loetscher, T.: The relationship between alertness and spatial attention under simulated shiftwork. Sci. Rep. 10(1), 1–12 (2020) Bao, N., Carballo, A., Miyajima, C., Takeuchi, E., Takeda, K.: Personalized subjective driving risk: analysis and prediction. J. Robot. Mechatron. 32(3), 503–519 (2020). https://doi.org/10.20965/jrm.2020.p0503 Li, X., Guo, Z., Li, Y.: Driver operational level identification of driving risk and graded time-based alarm under near-crash conditions: a driving simulator study. Accid. Anal. Prev. 166, 106544 (2022). https://doi.org/10.1016/j.aap.2021.106544 Ma, Y., Qi, S., Fan, L., Lu, W., Chan, C. Y., Zhang, Y.: Dynamic bayesian network approach to evaluate vehicle driving risk based on on-road experiment driving data. IEEE Access 7, 135050–135062 (2019). https://doi.org/10.1109/ACCESS.2019.2941959 Naji, H.A.H., Xue, Q., Lyu, N., Wu, C., Zheng, K.: Evaluating the driving risk of near-crash events using a mixed-ordered logit model. Sustainability 10(8), 2868 (2018). https://doi.org/10.3390/su10082868 Shangguan, Q., Fu, T., Wang, J., Luo, T., Fang, S.: An integrated methodology for real-time driving risk status prediction using naturalistic driving data. Accid. Anal. Prev. 156, 106122 (2021). https://doi.org/10.1016/j.aap.2021.106122 Wang, Y., Xu, W., Zhang, W., Zhao, J.L.: SafeDrive: a new model for driving risk analysis based on crash avoidance. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3033276 Zhang, T., Chan, A.H.S.: Sleepiness and the risk of road accidents for professional drivers: a systematic review and meta-analysis of retrospective studies. Saf. Sci. 70, 180–188 (2014). https://doi.org/10.1016/j.ssci.2014.05.022 Li, G., Yang, Y., Zhang, T., Qu, X., Cao, D., Cheng, B., Li, K.: Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios. Transp. Res. Pt. C-Emerg. Technol. 122, 102820 (2021). https://doi.org/10.1016/j.trc.2020.102820 Li, L., Gan, J., Ji, X., Qu, X., Ran, B.: Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling. IEEE Trans. Intell. Transp. Syst. 23, 122–141 (2020). https://doi.org/10.1109/TITS.2020.3008284 Mullakkal-Babu, F.A., Wang, M., He, X., van Arem, B., Happee, R.: Probabilistic field approach for motorway driving risk assessment. Transp. Res. Pt. C-Emerg. Technol. 118, 102716 (2020). https://doi.org/10.1016/j.trc.2020.102716 Wang, J., Huang, H., Li, Y., Zhou, H., Liu, J., Xu, Q.: Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis. Accid. Anal. Prev. 145, 105680 (2020). https://doi.org/10.1016/j.aap.2020.105680 Wang, J., Wu, J., Li, Y.: The driving safety field based on driver–vehicle–road interactions. IEEE Trans. Intell. Transp. Syst. 16(4), 2203–2214 (2015). https://doi.org/10.1109/TITS.2015.2401837 Woo, H., Ji, Y., Tamura, Y., Kuroda, Y., Sugano, T., Yamamoto, Y., Yamashita, A., Asama, H.: Dynamic state estimation of driving style based on driving risk feature. Int. J. Autom. Eng. 9(1), 31–38 (2018). https://doi.org/10.20485/jsaeijae.9.1_31 Yan, Y., Dai, Y., Li, X., Tang, J., Guo, Z.: Driving risk assessment using driving behavior data under continuous tunnel environment. Traffic Inj. Prev. 20(8), 807–812 (2019) Zheng, X., Huang, H., Wang, J., Zhao, X., Xu, Q.: Behavioral decision-making model of the intelligent vehicle based on driving risk assessment. Comput. Aided Civ. Infrastruct. Eng. 36(7), 820–837 (2021). https://doi.org/10.1111/mice.12507 Ani, M.F., Fukumi, M., RahayuKamat, S., Minhat, M., Husain, K.: Development of driving fatigue strain index using fuzzy logic to analyze risk levels of driving activity. IEEJ Trans. Electr. Electron. Eng. 14(12), 1764–1771 (2019). https://doi.org/10.1002/tee.23002 Seen, K.S., Mohd Tamrin, S.B., Meng, G.Y.: Driving fatigue and performance among occupational drivers in simulated prolonged driving. Glob. J. Health Sci. 2(1), 167–177 (2010). https://doi.org/10.5539/gjhs.v2n1p167 Al-Mekhlafi, A.B.A., Isha, A.S.N., Naji, G.M.A.: The relationship between fatigue and driving performance: a review and directions for future research. J. Crit. Rev. 7(14), 134–141 (2020). https://doi.org/10.31838/jcr.07.14.24 Meng, F., Wong, S.C., Yan, W., Li, Y.C., Yang, L.: Temporal patterns of driving fatigue and driving performance among male taxi drivers in Hong Kong: a driving simulator approach. Accid. Anal. Prev. 125, 7–13 (2019). https://doi.org/10.1016/j.aap.2019.01.020 Kwon, S., Kim, H., Kim, G.S., Cho, E.: Fatigue and poor sleep are associated with driving risk among Korean occupational drivers. J. Transp. Health 14, 100572 (2019). https://doi.org/10.1016/j.jth.2019.100572 Ting, P. H., Hwang, J. R., Doong, J. L., Jeng, M. C.: Driver fatigue and highway driving: a simulator study. Physiol. Behav. 94(3), 448–453 (2008) Yan, L., Gong, Y., Chen, Z., Li, Z., Guo, J.: Automatic identification method for driving risk status based on multi-sensor data. Pers. Ubiquitous Comput., 1–17 (2021) Sun, S., Bi, J., Guillen, M., Pérez-Marín, A.M.: Assessing driving risk using internet of vehicles data: an analysis based on generalized linear models. Sensors 20(9), 2712 (2020). https://doi.org/10.3390/s20092712 Wu, Y., Abdel-Aty, M., Park, J., Zhu, J.: Effects of crash warning systems on rear-end crash avoidance behavior under fog conditions. Transp. Res. Pt. C-Emerg. Technol. 95, 481–492 (2018). https://doi.org/10.1016/j.trc.2018.08.001 Xiong, X., Chen, L., Liang, J.: Vehicle driving risk prediction based on markov chain model. Discrete Dyn. Nat. Soc. 2018, 4954621 (2018). https://doi.org/10.1155/2018/4954621 Ding, H., Ghazilla, R.A.R., Singh, R.S.K., Wei, L.: Deep learning method for risk identification under multiple physiological signals and PAD model. Microprocess. Microsyst. 88, 104393 (2022). https://doi.org/10.1016/j.micpro.2021.104393 Ryan, C., Murphy, F., Mullins, M.: End-to-End autonomous driving risk analysis: a behavioural anomaly detection approach. IEEE Trans. Intell. Transp. Syst. 22(3), 1650–1662 (2021). https://doi.org/10.1109/TITS.2020.2975043 Lin, L., Wang, Q., Sadek, A.W.: A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transp. Res. Pt. C-Emerg. Technol. 55, 444–459 (2015). https://doi.org/10.1016/j.trc.2015.03.015 Fu, X., Meng, H., Wang, X., Yang, H., Wang, J.: A hybrid neural network for driving behavior risk prediction based on distracted driving behavior data. PLoS One 17(1), 0263030 (2022). https://doi.org/10.1371/journal.pone.0263030 Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X.: Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management Using. EM-GIS’17, pp. 1–6. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3152465.3152476 Faul, F., Erdfelder, E., Lang, A. G., Buchner, A.: G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39(2), 175–191 (2007) Ostertagova, E., Ostertag, O., Kováč, J.: Methodology and application of the kruskal–wallis test. In: Applied Mechanics and Materials, vol. 611, pp. 115–120 (2014). Trans Tech Publ Zheng, Y., Wang, J., Li, X., Yu, C., Kodaka, K., Li, K.: Driving risk assessment using cluster analysis based on naturalistic driving data. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 2584–2589 (2014). https://doi.org/10.1109/ITSC.2014.6958104 Lin, C.T., Wu, R. C., Liang, S.F., et al.: EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circuits Syst. I-Regul. Pap. 52(12), 2726–2738 (2005). https://doi.org/10.1109/TCSI.2005.857555 Li, R., Chen, Y.V., Zhang, L.: A method for fatigue detection based on driver’s steering wheel grip. Int. J. Ind. Ergon. 82, 103083 (2021). https://doi.org/10.1016/j.ergon.2021.103083 Sun, Y., Wu, C., Zhang, H., Zhou, W., Li, X., Zhang, Q.: Extraction of optimal fatigue-driving steering indicators considering individual differences. IET Intell. Transp. Syst. 15, 606–618 (2021). https://doi.org/10.1049/itr2.12048 Zhang, H., Wu, C., Yan, X., Qiu, T.Z.: The effect of fatigue driving on car following behavior. Transp. Res. Pt. F-Traffic Psychol. Behav. 43, 80–89 (2016). https://doi.org/10.1016/j.trf.2016.06.017 Zhongwei, H., Shuangjiang, O., Dengyuan, X.: Research on fatigue driving feature detection algorithms of drivers based on machine learning. Syst. Sci. Control Eng. 9(1), 167–172 (2021). https://doi.org/10.1080/21642583.2021.1888819 Abrams, R.A., Christ, S.E.: Motion onset captures attention. Psychol. Sci. 14(5), 427–432 (2003). https://doi.org/10.1111/1467-9280.01458 James, W., Burkhardt, F., Bowers, F., Skrupskelis, I.K.: The Principles of Psychology, vol. 1. Henry Holt and Company, New York, NY (1890) Guo, F., Fang, Y.: Individual driver risk assessment using naturalistic driving data. Accid. Anal. Prev. 61, 3–9 (2013) Guo, F., Klauer, S.G., Hankey, J.M., Dingus, T.A.: Near crashes as crash surrogate for naturalistic driving studies. Transp. Res. Record 2147(1), 66–74 (2010) Perkins, S.R., Harris, J.L.: Traffic conflict characteristics-accident potential at intersections. Highway Res. Rec. (225) (1968) Sun, C., Li, B., Li, Y., Lu, Z.: Driving risk classification methodology for intelligent drive in real traffic event. Int. J. Pattern Recognit. Artif. Intell. 33(09), 1950014 (2019) He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008). https://doi.org/10.1109/IJCNN.2008.4633969 Shi, X., Wong, Y.D., Li, M.Z.F., Palanisamy, C., Chai, C.: A feature learning approach based on XGBoost for driving assessment and risk prediction. Accid. Anal. Prev. 129, 170–179 (2019). https://doi.org/10.1016/j.aap.2019.05.005