Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hướng tới tương tác giữa con người và phương tiện: Phân tích rủi ro lái xe dưới các trạng thái cảnh giác khác nhau của người lái và phương pháp phát hiện rủi ro lái xe
Tóm tắt
Hành vi của người lái xe đóng một vai trò quan trọng trong an toàn giao thông. Người ta thường công nhận rằng cảnh giác của người lái là một yếu tố chính góp phần gây ra tai nạn giao thông. Tuy nhiên, tác động định lượng của cảnh giác lái xe đối với rủi ro lái xe vẫn chưa được khám phá đầy đủ. Nghiên cứu này nhằm điều tra mối quan hệ giữa cảnh giác lái xe và rủi ro lái xe, sử dụng dữ liệu ghi lại từ 28 tài xế duy trì tốc độ 80 km/h trên một tuyến đường cao tốc đơn điệu trong 2 giờ. Phương pháp k-means và phương pháp phù hợp tuyến tính được sử dụng để phân tích phân bố rủi ro lái xe dưới các trạng thái cảnh giác lái xe khác nhau. Ngoài ra, nghiên cứu này đề xuất một khung nghiên cứu để phân tích rủi ro lái xe và phát triển ba mô hình phân loại (KNN, SVM và DNN) để nhận diện trạng thái rủi ro lái xe. Kết quả cho thấy tần suất của các sự cố rủi ro thấp có tương quan âm với mức độ cảnh giác của người lái, trong khi tần suất của các sự cố rủi ro vừa và cao có tương quan dương với mức độ cảnh giác của người lái. Mô hình DNN đạt hiệu suất tốt nhất với độ chính xác 0.972, độ hồi tưởng 0.972, độ chính xác 0.973 và f1-score 0.972, so với KNN và SVM. Nghiên cứu này có thể phục vụ như một tài liệu tham khảo quý giá cho việc thiết kế các hệ thống cảnh báo và phương tiện thông minh.
Từ khóa
#cảnh giác lái xe #rủi ro lái xe #phân tích rủi ro #mô hình phân loại #hệ thống cảnh báoTài liệu tham khảo
Li, W., Cui, Y., Ma, Y., Chen, X., Li, G., Zeng, G., Guo, G., Cao, D.: A spontaneous driver emotion facial expression (DEFE) dataset for intelligent vehicles: emotions triggered by video-audio clips in driving scenarios. IEEE Trans. Affect. Comput. (2021). https://doi.org/10.1109/TAFFC.2021.3063387
Li, W., Zeng, G., Zhang, J., Xu, Y., Xing, Y., Zhou, R., Guo, G., Shen, Y., Cao, D., Wang, F. Y.: CogEmoNet: a cognitive-feature-augmented driver emotion recognition model for smart cockpit. IEEE Trans. Comput. Soc. Syst. 9(3), 667–678 (2021). https://doi.org/10.1109/TCSS.2021.3127935
Organization, W.H.: Global status report on road safety 2018: Summary. World Health Organization, Technical report (2018)
Ryan, M.: The future of transportation: ethical, legal, social and economic impacts of self-driving vehicles in the year 2025. Sci. Eng. Ethics 26(3), 1185–1208 (2020). https://doi.org/10.1007/s11948-019-00130-2
The Ministry of Public Security of the People’s Republic of China: In 2021, the National Motor Vehicle Ownership Has Reached 395 Million, and New Energy Vehicles Have Increased by 59.25% Year-on-Year (2022). https://www.mps.gov.cn/n2254314/n6409334/c8322353/content.html
Staubach, M.: Factors correlated with traffic accidents as a basis for evaluating advanced driver assistance systems. Accid. Anal. Prev. 41(5), 1025–1033 (2009). https://doi.org/10.1016/j.aap.2009.06.014
Khattak, A.J., Ahmad, N., Wali, B., Dumbaugh, E.: A taxonomy of driving errors and violations: evidence from the naturalistic driving study. Accid. Anal. Prev. 151, 105873 (2021). https://doi.org/10.1016/j.aap.2020.105873
Siordia, O.S., Martín de Diego, I., Conde, C., Reyes, G., Cabello, E.: Driving risk classification based on experts evaluation. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 1098–1103 (2010). https://doi.org/10.1109/IVS.2010.5548130
Pylkkönen, M., Sihvola, M., Hyvärinen, H.K., Puttonen, S., Hublin, C., Sallinen, M.: Sleepiness, sleep, and use of sleepiness countermeasures in shift-working long-haul truck drivers. Accid. Anal. Prev. 80, 201–210 (2015). https://doi.org/10.1016/j.aap.2015.03.031
Evans, L.: The dominant role of driver behavior in traffic safety. Am. J. Public Health 86(6), 784–786 (1996)
Ortiz, C., Ortiz-Peregrina, S., Castro, J.J., Casares-López, M., Salas, C.: Driver distraction by smartphone use (WhatsApp) in different age groups. Accid. Anal. Prev. 117, 239–249 (2018). https://doi.org/10.1016/j.aap.2018.04.018
Oviedo-Trespalacios, O., Truelove, V., Watson, B., Hinton, J.A.: The impact of road advertising signs on driver behaviour and implications for road safety: a critical systematic review. Transp. Res. Pt. A-Policy Pract. 122, 85–98 (2019). https://doi.org/10.1016/j.tra.2019.01.012
Pawar, N.M., Velaga, N.R.: Modelling the influence of time pressure on reaction time of drivers. Transp. Res. Pt. F-Traffic Psychol. Behav. 72, 1–22 (2020). https://doi.org/10.1016/j.trf.2020.04.017
Li, W., Zhang, B., Wang, P., Sun, C., Zeng, G., Tang, Q., Guo, G., Cao, D.: Visual-attribute-based emotion regulation of angry driving behaviours. IEEE Intell. Transp. Syst. Mag. 14(3), 10–28 (2021). https://doi.org/10.1109/MITS.2021.3050890
Qu, W., Zhang, W., Ge, Y.: The moderating effect of delay discounting between sensation seeking and risky driving behavior. Saf. Sci. 123, 104558 (2020). https://doi.org/10.1016/j.ssci.2019.104558
Kang, H. B.: Various approaches for driver and driving behavior monitoring: a review. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 616–623 (2013)
Kuo, J., Lenné, M.G., Mulhall, M., Sletten, T., Anderson, C., Howard, M., Rajaratnam, S., Magee, M., Collins, A.: Continuous monitoring of visual distraction and drowsiness in shift-workers during naturalistic driving. Saf. Sci. 119, 112–116 (2019). https://doi.org/10.1016/j.ssci.2018.11.007
Desai, A.V., Haque, M.A.: Vigilance monitoring for operator safety: a simulation study on highway driving. J. Saf. Res. 37(2), 139–147 (2006)
Hoddes, E., Dement, W., Zarcone, V.: The development and use of the Stanford Sleepiness Scale (SSS). Psychophysiology 9, 150–162 (1972)
Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., Dement, W.C.: Quantification of sleepiness: a new approach. Psychophysiology 10(4), 431–436 (1973)
Shahid, A., Wilkinson, K., Marcu, S., Shapiro, C.M.: STOP, THAT and One Hundred Other Sleep Scales. Springer, New York, NY (2012)
Chandrakumar, D., Dorrian, J., Banks, S., Keage, H.A., Coussens, S., Gupta, C., Centofanti, S., Stepien, J., Loetscher, T.: The relationship between alertness and spatial attention under simulated shiftwork. Sci. Rep. 10(1), 1–12 (2020)
Bao, N., Carballo, A., Miyajima, C., Takeuchi, E., Takeda, K.: Personalized subjective driving risk: analysis and prediction. J. Robot. Mechatron. 32(3), 503–519 (2020). https://doi.org/10.20965/jrm.2020.p0503
Li, X., Guo, Z., Li, Y.: Driver operational level identification of driving risk and graded time-based alarm under near-crash conditions: a driving simulator study. Accid. Anal. Prev. 166, 106544 (2022). https://doi.org/10.1016/j.aap.2021.106544
Ma, Y., Qi, S., Fan, L., Lu, W., Chan, C. Y., Zhang, Y.: Dynamic bayesian network approach to evaluate vehicle driving risk based on on-road experiment driving data. IEEE Access 7, 135050–135062 (2019). https://doi.org/10.1109/ACCESS.2019.2941959
Naji, H.A.H., Xue, Q., Lyu, N., Wu, C., Zheng, K.: Evaluating the driving risk of near-crash events using a mixed-ordered logit model. Sustainability 10(8), 2868 (2018). https://doi.org/10.3390/su10082868
Shangguan, Q., Fu, T., Wang, J., Luo, T., Fang, S.: An integrated methodology for real-time driving risk status prediction using naturalistic driving data. Accid. Anal. Prev. 156, 106122 (2021). https://doi.org/10.1016/j.aap.2021.106122
Wang, Y., Xu, W., Zhang, W., Zhao, J.L.: SafeDrive: a new model for driving risk analysis based on crash avoidance. IEEE Trans. Intell. Transp. Syst. (2020). https://doi.org/10.1109/TITS.2020.3033276
Zhang, T., Chan, A.H.S.: Sleepiness and the risk of road accidents for professional drivers: a systematic review and meta-analysis of retrospective studies. Saf. Sci. 70, 180–188 (2014). https://doi.org/10.1016/j.ssci.2014.05.022
Li, G., Yang, Y., Zhang, T., Qu, X., Cao, D., Cheng, B., Li, K.: Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios. Transp. Res. Pt. C-Emerg. Technol. 122, 102820 (2021). https://doi.org/10.1016/j.trc.2020.102820
Li, L., Gan, J., Ji, X., Qu, X., Ran, B.: Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling. IEEE Trans. Intell. Transp. Syst. 23, 122–141 (2020). https://doi.org/10.1109/TITS.2020.3008284
Mullakkal-Babu, F.A., Wang, M., He, X., van Arem, B., Happee, R.: Probabilistic field approach for motorway driving risk assessment. Transp. Res. Pt. C-Emerg. Technol. 118, 102716 (2020). https://doi.org/10.1016/j.trc.2020.102716
Wang, J., Huang, H., Li, Y., Zhou, H., Liu, J., Xu, Q.: Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis. Accid. Anal. Prev. 145, 105680 (2020). https://doi.org/10.1016/j.aap.2020.105680
Wang, J., Wu, J., Li, Y.: The driving safety field based on driver–vehicle–road interactions. IEEE Trans. Intell. Transp. Syst. 16(4), 2203–2214 (2015). https://doi.org/10.1109/TITS.2015.2401837
Woo, H., Ji, Y., Tamura, Y., Kuroda, Y., Sugano, T., Yamamoto, Y., Yamashita, A., Asama, H.: Dynamic state estimation of driving style based on driving risk feature. Int. J. Autom. Eng. 9(1), 31–38 (2018). https://doi.org/10.20485/jsaeijae.9.1_31
Yan, Y., Dai, Y., Li, X., Tang, J., Guo, Z.: Driving risk assessment using driving behavior data under continuous tunnel environment. Traffic Inj. Prev. 20(8), 807–812 (2019)
Zheng, X., Huang, H., Wang, J., Zhao, X., Xu, Q.: Behavioral decision-making model of the intelligent vehicle based on driving risk assessment. Comput. Aided Civ. Infrastruct. Eng. 36(7), 820–837 (2021). https://doi.org/10.1111/mice.12507
Ani, M.F., Fukumi, M., RahayuKamat, S., Minhat, M., Husain, K.: Development of driving fatigue strain index using fuzzy logic to analyze risk levels of driving activity. IEEJ Trans. Electr. Electron. Eng. 14(12), 1764–1771 (2019). https://doi.org/10.1002/tee.23002
Seen, K.S., Mohd Tamrin, S.B., Meng, G.Y.: Driving fatigue and performance among occupational drivers in simulated prolonged driving. Glob. J. Health Sci. 2(1), 167–177 (2010). https://doi.org/10.5539/gjhs.v2n1p167
Al-Mekhlafi, A.B.A., Isha, A.S.N., Naji, G.M.A.: The relationship between fatigue and driving performance: a review and directions for future research. J. Crit. Rev. 7(14), 134–141 (2020). https://doi.org/10.31838/jcr.07.14.24
Meng, F., Wong, S.C., Yan, W., Li, Y.C., Yang, L.: Temporal patterns of driving fatigue and driving performance among male taxi drivers in Hong Kong: a driving simulator approach. Accid. Anal. Prev. 125, 7–13 (2019). https://doi.org/10.1016/j.aap.2019.01.020
Kwon, S., Kim, H., Kim, G.S., Cho, E.: Fatigue and poor sleep are associated with driving risk among Korean occupational drivers. J. Transp. Health 14, 100572 (2019). https://doi.org/10.1016/j.jth.2019.100572
Ting, P. H., Hwang, J. R., Doong, J. L., Jeng, M. C.: Driver fatigue and highway driving: a simulator study. Physiol. Behav. 94(3), 448–453 (2008)
Yan, L., Gong, Y., Chen, Z., Li, Z., Guo, J.: Automatic identification method for driving risk status based on multi-sensor data. Pers. Ubiquitous Comput., 1–17 (2021)
Sun, S., Bi, J., Guillen, M., Pérez-Marín, A.M.: Assessing driving risk using internet of vehicles data: an analysis based on generalized linear models. Sensors 20(9), 2712 (2020). https://doi.org/10.3390/s20092712
Wu, Y., Abdel-Aty, M., Park, J., Zhu, J.: Effects of crash warning systems on rear-end crash avoidance behavior under fog conditions. Transp. Res. Pt. C-Emerg. Technol. 95, 481–492 (2018). https://doi.org/10.1016/j.trc.2018.08.001
Xiong, X., Chen, L., Liang, J.: Vehicle driving risk prediction based on markov chain model. Discrete Dyn. Nat. Soc. 2018, 4954621 (2018). https://doi.org/10.1155/2018/4954621
Ding, H., Ghazilla, R.A.R., Singh, R.S.K., Wei, L.: Deep learning method for risk identification under multiple physiological signals and PAD model. Microprocess. Microsyst. 88, 104393 (2022). https://doi.org/10.1016/j.micpro.2021.104393
Ryan, C., Murphy, F., Mullins, M.: End-to-End autonomous driving risk analysis: a behavioural anomaly detection approach. IEEE Trans. Intell. Transp. Syst. 22(3), 1650–1662 (2021). https://doi.org/10.1109/TITS.2020.2975043
Lin, L., Wang, Q., Sadek, A.W.: A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction. Transp. Res. Pt. C-Emerg. Technol. 55, 444–459 (2015). https://doi.org/10.1016/j.trc.2015.03.015
Fu, X., Meng, H., Wang, X., Yang, H., Wang, J.: A hybrid neural network for driving behavior risk prediction based on distracted driving behavior data. PLoS One 17(1), 0263030 (2022). https://doi.org/10.1371/journal.pone.0263030
Wang, Y., Xu, W., Zhang, Y., Qin, Y., Zhang, W., Wu, X.: Machine learning methods for driving risk prediction. In: Proceedings of the 3rd ACM SIGSPATIAL Workshop on Emergency Management Using. EM-GIS’17, pp. 1–6. Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3152465.3152476
Faul, F., Erdfelder, E., Lang, A. G., Buchner, A.: G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39(2), 175–191 (2007)
Ostertagova, E., Ostertag, O., Kováč, J.: Methodology and application of the kruskal–wallis test. In: Applied Mechanics and Materials, vol. 611, pp. 115–120 (2014). Trans Tech Publ
Zheng, Y., Wang, J., Li, X., Yu, C., Kodaka, K., Li, K.: Driving risk assessment using cluster analysis based on naturalistic driving data. In: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 2584–2589 (2014). https://doi.org/10.1109/ITSC.2014.6958104
Lin, C.T., Wu, R. C., Liang, S.F., et al.: EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Trans. Circuits Syst. I-Regul. Pap. 52(12), 2726–2738 (2005). https://doi.org/10.1109/TCSI.2005.857555
Li, R., Chen, Y.V., Zhang, L.: A method for fatigue detection based on driver’s steering wheel grip. Int. J. Ind. Ergon. 82, 103083 (2021). https://doi.org/10.1016/j.ergon.2021.103083
Sun, Y., Wu, C., Zhang, H., Zhou, W., Li, X., Zhang, Q.: Extraction of optimal fatigue-driving steering indicators considering individual differences. IET Intell. Transp. Syst. 15, 606–618 (2021). https://doi.org/10.1049/itr2.12048
Zhang, H., Wu, C., Yan, X., Qiu, T.Z.: The effect of fatigue driving on car following behavior. Transp. Res. Pt. F-Traffic Psychol. Behav. 43, 80–89 (2016). https://doi.org/10.1016/j.trf.2016.06.017
Zhongwei, H., Shuangjiang, O., Dengyuan, X.: Research on fatigue driving feature detection algorithms of drivers based on machine learning. Syst. Sci. Control Eng. 9(1), 167–172 (2021). https://doi.org/10.1080/21642583.2021.1888819
Abrams, R.A., Christ, S.E.: Motion onset captures attention. Psychol. Sci. 14(5), 427–432 (2003). https://doi.org/10.1111/1467-9280.01458
James, W., Burkhardt, F., Bowers, F., Skrupskelis, I.K.: The Principles of Psychology, vol. 1. Henry Holt and Company, New York, NY (1890)
Guo, F., Fang, Y.: Individual driver risk assessment using naturalistic driving data. Accid. Anal. Prev. 61, 3–9 (2013)
Guo, F., Klauer, S.G., Hankey, J.M., Dingus, T.A.: Near crashes as crash surrogate for naturalistic driving studies. Transp. Res. Record 2147(1), 66–74 (2010)
Perkins, S.R., Harris, J.L.: Traffic conflict characteristics-accident potential at intersections. Highway Res. Rec. (225) (1968)
Sun, C., Li, B., Li, Y., Lu, Z.: Driving risk classification methodology for intelligent drive in real traffic event. Int. J. Pattern Recognit. Artif. Intell. 33(09), 1950014 (2019)
He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008). https://doi.org/10.1109/IJCNN.2008.4633969
Shi, X., Wong, Y.D., Li, M.Z.F., Palanisamy, C., Chai, C.: A feature learning approach based on XGBoost for driving assessment and risk prediction. Accid. Anal. Prev. 129, 170–179 (2019). https://doi.org/10.1016/j.aap.2019.05.005