Towards High Conductivity in Anion‐Exchange Membranes for Alkaline Fuel Cells

Wiley - Tập 6 Số 8 - Trang 1376-1383 - 2013
Nanwen Li1, Michael D. Guiver2, Wolfgang H. Binder1
1Institute of Chemistry, Chair of Macromolecular Chemistry, Division of Technical and Macromolecular Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Martin‐Luther‐University Halle‐Wittenberg, Halle 06120 (Germany)
2National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada

Tóm tắt

AbstractQuaternized poly(2,6‐dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3‐triazoles were first prepared through CuI‐catalyzed “click chemistry” to improve the anion transport in anion‐exchange membranes (AEMs). Clicked 1,2,3‐triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen‐bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8–62 mS cm−1 at 20 °C in water, which was several times higher than that of a typical PPO‐based AEM (TMA‐20) derived from trimethylamine (5 mS cm−1). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine‐based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non‐clicked membranes. The performance of a H2/O2 single cell assembled with a clicked AEM was much improved compared to that of a non‐clicked TMA‐20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm−2 at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells.

Từ khóa


Tài liệu tham khảo

 

10.1351/pac198658121613

10.1016/j.progpolymsci.2011.06.001

10.1016/j.memsci.2005.05.002

10.1002/cssc.201200601

 

10.1016/j.memsci.2011.04.043

10.1039/b703315j

10.1002/adfm.200901314

 

10.1002/ange.200806299

10.1002/anie.200806299

10.1021/ma100260a

10.1021/ma202159d

10.1002/cssc.201200057

 

10.1021/ja211365r

10.1021/ma202681z

10.1039/c0cc01834a

 

10.1021/ja905242r

10.1021/ja908638d

10.1039/c1cc12430g

10.1039/c0cc03618h

 

10.1016/j.jpowsour.2011.01.081

10.1021/ja204166e

10.1021/cr020715f

 

10.1149/1.3273200

10.1002/cphc.200600128

10.1039/b109792j

10.1149/1.1855872

10.1073/pnas.0401696101

 

10.1038/nature00797

10.1016/S0009-2614(00)00136-6

 

10.1016/j.jpowsour.2010.11.104

10.1016/S1388-2481(00)00107-7

10.1016/S0040-4020(01)87080-0

 

10.1021/ja052280u

10.1038/nchem.629

 

10.1002/marc.200800089

10.1039/c1jm11558h

10.1021/cr900138t

10.1021/jo011148j

10.1002/1521-3757(20020715)114:14<2708::AID-ANGE2708>3.0.CO;2-0

10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

 

10.1016/S0376-7388(01)00434-3

10.1039/c2ee22050d

10.1021/cm062407u

10.1021/ma901538c

10.1021/ma901606z

 

10.1016/S0013-4686(97)10031-7

10.1021/cm703263n

 

10.1002/cssc.200700013

10.1149/1.3058999

10.1021/ma902430y