Towards Engineering an Ecosystem: A Review of Computational Approaches to Explore and Exploit the Human Microbiome for Healthcare

Springer Science and Business Media LLC - Tập 7 - Trang 29-45 - 2021
Anirban Dutta1, Sharmila S. Mande1
1TCS Research, Tata Consultancy Services Ltd., Pune, India

Tóm tắt

The diverse and complex microbial community inhabiting the human body, also known as the microbiome, plays a significant role in our health and wellbeing. Any dysbiosis or disruption to this microbial ecosystem can result in several health implications. Engineering and tweaking the ecosystem to restore balance is an active area of modern clinical research. Both conventional probiotics as well as more contemporary efforts towards designing ‘cocktails’ of live microbial cells are being pursued with the aim of modulating the microbiome to our benefit. However, to make such live-biotherapeutic treatment effective and to alleviate any safety concerns, rational design approaches and clarity on mechanisms of action are needed. The current review describes computational approaches towards understanding and modelling the complex ecological interactions amongst microbes, as well as their interactions with the host physiology. Current approaches and some emerging techniques catering to collation of microbe-microbe association data, construction and analysis of complex biological networks, as well as modelling and simulation of microbial cells and ecosystems have been discussed. Ability to make predictions on how the microbiome behaves when subjected to any intervention is expected to help in rational design and informed prescription of novel therapeutics. This will in turn help in engineering this microbial ecosystem to our benefit. While the discussed methods and approaches may not constitute an exhaustive list of currently available resources, the present review article aims to serve as a guideline for building systems level perspectives on microbes and microbial communities.

Tài liệu tham khảo

Allin KH, Nielsen T, Pedersen O (2015) Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol 172:R167-177. https://doi.org/10.1530/EJE-14-0874 Allin KH, Tremaroli V, Caesar R et al (2018) Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61:810–820. https://doi.org/10.1007/s00125-018-4550-1 Alvarez-Silva C, Kashani A, Hansen TH et al (2021) Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med 13:37. https://doi.org/10.1186/s13073-021-00856-4 Anand S, Mande SS (2018) Diet, microbiota and gut-lung connection. Front Microbiol 9: 2147. Doi: https://doi.org/10.3389/fmicb.2018.02147 Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. https://doi.org/10.1126/science.1224820 Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. https://doi.org/10.1038/nature09944 Ay A, Arnosti DN (2011) Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol 46:137–151. https://doi.org/10.3109/10409238.2011.556597 Baksi KD, Kuntal BK, Mande SS (2018) ‘TIME’: a web application for obtaining insights into microbial ecology using longitudinal microbiome data. Front Microbiol. https://doi.org/10.3389/fmicb.2018.00036 Baldini F, Heinken A, Heirendt L et al (2019) The Microbiome modeling toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35:2332–2334. https://doi.org/10.1093/bioinformatics/bty941 Banerjee S, Kirkby CA, Schmutter D et al (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198. https://doi.org/10.1016/j.soilbio.2016.03.017 Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576. https://doi.org/10.1038/s41579-018-0024-1 Bayal N, Nagpal S, Haque MM et al (2019) 16S rDNA based skin microbiome data of healthy individuals and leprosy patients from India. Sci Data 6:225. https://doi.org/10.1038/s41597-019-0232-1 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (methodol) 57:289–300 Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00219 Bharadwaj A, Singh DP, Ritz A et al (2017) GraphSpace: stimulating interdisciplinary collaborations in network biology. Bioinformatics 33:3134–3136. https://doi.org/10.1093/bioinformatics/btx382 Bose T, Das C, Dutta A et al (2018) Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach. BMC Genomics 19:555 Brohée S, Faust K, Lima-Mendez G et al (2008) NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways. Nucleic Acids Res 36:W444-451. https://doi.org/10.1093/nar/gkn336 Brunner JD, Chia N (2020) Minimizing the number of optimizations for efficient community dynamic flux balance analysis. PLoS Comput Biol 16:e1007786. https://doi.org/10.1371/journal.pcbi.1007786 Bucci V, Tzen B, Li N et al (2016) MDSINE: microbial dynamical systems INference Engine for microbiome time-series analyses. Genome Biol 17:121. https://doi.org/10.1186/s13059-016-0980-6 Budinich M, Bourdon J, Larhlimi A, Eveillard D (2017) A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS ONE 12:e0171744. https://doi.org/10.1371/journal.pone.0171744 Calle ML (2019) Statistical analysis of metagenomics data. Genom Inform. https://doi.org/10.5808/GI.2019.17.1.e6 Carpenter SR, Brock WA, Folke C et al (2015) Allowing variance may enlarge the safe operating space for exploited ecosystems. PNAS 112:14384–14389 Chaffron S, Rehrauer H, Pernthaler J, von Mering C (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20:947–959. https://doi.org/10.1101/gr.104521.109 Chakravarthy SK, Jayasudha R, Ranjith K et al (2018) Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS ONE 13:e0199640 Chen X, Huang Y-A, You Z-H et al (2017) A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33:733–739. https://doi.org/10.1093/bioinformatics/btw715 Chen Y, Chen X, Yu H et al (2019) Oral microbiota as promising diagnostic biomarkers for gastrointestinal cancer: a systematic review. Onco Targets Ther 12:11131. https://doi.org/10.2147/OTT.S230262 Cowley MJ, Pinese M, Kassahn KS et al (2012) PINA v2.0: mining interactome modules. Nucleic Acids Res 40:D862-865. https://doi.org/10.1093/nar/gkr967 Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9 Dai L, Vorselen D, Korolev KS, Gore J (2012) Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336:1175–1177. https://doi.org/10.1126/science.1219805 Dai D, Wang T, Wu S et al (2019) Metabolic dependencies underlie interaction patterns of gut microbiota during enteropathogenesis. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01205 Das C, Dutta A, Rajasingh H, Mande SS (2013) Understanding the sequential activation of type III and type VI secretion systems in Salmonella typhimurium using Boolean modeling. Gut Pathog 5:28 Das C, Mokashi C, Mande SS, Saini S (2018) Dynamics and control of flagella assembly in Salmonella typhimurium. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2018.00036 Durot M, Bourguignon P-Y, Schachter V (2009) Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 33:164–190. https://doi.org/10.1111/j.1574-6976.2008.00146.x Ernst J, Bar-Joseph Z (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinform 7:1–11. https://doi.org/10.1186/1471-2105-7-191 Fang H, Huang C, Zhao H, Deng M (2015) CCLasso: correlation inference for compositional data through Lasso. Bioinformatics 31:3172–3180. https://doi.org/10.1093/bioinformatics/btv349 Faust K (2021) Open challenges for microbial network construction and analysis. ISME J. https://doi.org/10.1038/s41396-021-01027-4 Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832 Faust K, Sathirapongsasuti JF, Izard J et al (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606. https://doi.org/10.1371/journal.pcbi.1002606 Feist AM, Palsson BØ (2008) The Growing Scope of Applications of Genome-scale Metabolic Reconstructions: the case of E. coli. Nature biotechnology 26:659. https://doi.org/10.1038/nbt1401 Fisher CK, Mehta P (2014) Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9:e102451. https://doi.org/10.1371/journal.pone.0102451 Forkosh E, Ilan Y (2019) The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart 6:e000993. https://doi.org/10.1136/openhrt-2018-000993 Frank DN, Amand ALS, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–13785. https://doi.org/10.1073/pnas.0706625104 Freilich S, Kreimer A, Meilijson I et al (2010) The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res 38:3857–3868. https://doi.org/10.1093/nar/gkq118 Gaisawat MB, MacPherson CW, Tremblay J et al (2019) Probiotic supplementation in a clostridium difficile-infected gastrointestinal model is associated with restoring metabolic function of microbiota. Microorganisms. https://doi.org/10.3390/microorganisms8010060 Ganju P, Nagpal S, Mohammed MH et al (2016) Microbial community profiling shows dysbiosis in the lesional skin of Vitiligo subjects. Sci Rep 6:18761. https://doi.org/10.1038/srep18761 Gerasch A, Faber D, Küntzer J et al (2014) BiNA: a visual analytics tool for biological network data. PLoS ONE 9:e87397. https://doi.org/10.1371/journal.pone.0087397 Ghosh TS, Gupta SS, Bhattacharya T et al (2014) Gut microbiomes of Indian children of varying nutritional status. PLoS ONE 9:e95547. https://doi.org/10.1371/journal.pone.0095547 Giuliani C, Marzorati M, Innocenti M et al (2016) Dietary supplement based on stilbenes: a focus on gut microbial metabolism by the in vitro simulator M-SHIME®. Food Funct 7:4564–4575. https://doi.org/10.1039/C6FO00784H Gloor GB, Reid G (2016) Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol 62:692–703. https://doi.org/10.1139/cjm-2015-0821 Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621. https://doi.org/10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2 Guo XY, Liu XJ, Hao JY (2020) Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. J Dig Dis 21:147–159. https://doi.org/10.1111/1751-2980.12849 Gupta SS, Mohammed MH, Ghosh TS et al (2011) Metagenome of the gut of a malnourished child. Gut Pathog 3:7. https://doi.org/10.1186/1757-4749-3-7 Gurung M, Li Z, You H et al (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.11.051 Hajishengallis G, Liang S, Payne MA et al (2011) A low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and the complement pathway. Cell Host Microbe 10:497–506. https://doi.org/10.1016/j.chom.2011.10.006 Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725. https://doi.org/10.1038/nrmicro2873 Halfvarson J, Brislawn CJ, Lamendella R et al (2017) Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2:1–7. https://doi.org/10.1038/nmicrobiol.2017.4 Handcock MS, Hunter DR, Butts CT et al (2008) statnet: software tools for the representation, visualization, analysis and simulation of network data. J Stat Softw 24:1548–7660 Haque MM, Merchant M, Kumar PN et al (2017) First-trimester vaginal microbiome diversity: a potential indicator of preterm delivery risk. Sci Rep 7:16145. https://doi.org/10.1038/s41598-017-16352-y Hegde SR, Rajasingh H, Das C et al (2012) Understanding communication signals during mycobacterial latency through predicted genome-wide protein interactions and Boolean modeling. PLoS ONE 7:e33893. https://doi.org/10.1371/journal.pone.0033893 Heinken A, Ravcheev DA, Baldini F et al (2019) Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7:75. https://doi.org/10.1186/s40168-019-0689-3 Hirschberg S, Gisevius B, Duscha A, Haghikia A (2019) Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20123109 Hold GL, Smith M, Grange C et al (2014) Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years? World J Gastroenterol 20:1192–1210. https://doi.org/10.3748/wjg.v20.i5.1192 Huang Z-A, Chen X, Zhu Z et al (2017) PBHMDA: path-based human microbe-disease association prediction. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00233 Kane AV, Dinh DM, Ward HD (2015) Childhood malnutrition and the intestinal microbiome malnutrition and the microbiome. Pediatr Res 77:256–262. https://doi.org/10.1038/pr.2014.179 Kaur H, Bose C, Mande SS (2019) Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Front Neurosci. https://doi.org/10.3389/fnins.2019.01365 Khandelwal RA, Olivier BG, Röling WFM et al (2013) Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8:e64567. https://doi.org/10.1371/journal.pone.0064567 Kim KO, Gluck M (2019) Fecal microbiota transplantation: an update on clinical practice. Clin Endosc 52:137. https://doi.org/10.5946/ce.2019.009 Kim JE, Kim HS (2019) Microbiome of the skin and gut in atopic dermatitis (AD): understanding the pathophysiology and finding novel management strategies. J Clin Med. https://doi.org/10.3390/jcm8040444 Klitgord N, Segrè D (2010) Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 6:e1001002. https://doi.org/10.1371/journal.pcbi.1001002 Konturek PC, Harsch IA, Konturek K et al (2018) Gut-liver axis: how do gut bacteria influence the liver? Med Sci (basel). https://doi.org/10.3390/medsci6030079 Krammer E-M, de Ruyck J, Roos G et al (2018) Targeting dynamical binding processes in the design of non-antibiotic anti-adhesives by molecular simulation—the example of FimH. Molecules. https://doi.org/10.3390/molecules23071641 Kumar SCM, Chugh K, Dutta A et al (2021) Chaperonin abundance enhances bacterial fitness. Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.669996 Kuntal BK, Ghosh TS, Mande SS (2013) Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes. Genomics 102:409–418. https://doi.org/10.1016/j.ygeno.2013.08.004 Kuntal BK, Dutta A, Mande SS (2016) CompNet: a GUI based tool for comparison of multiple biological interaction networks. BMC Bioinform 17:185 Kuntal BK, Chandrakar P, Sadhu S, Mande SS (2019) ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J 13:442–454. https://doi.org/10.1038/s41396-018-0291-x Lai D, Lu H, Nardini C (2010) Enhanced modularity-based community detection by random walk network preprocessing. Phys Rev E 81:066118. https://doi.org/10.1103/PhysRevE.81.066118 Levy R, Borenstein E (2013) Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. PNAS 110:12804–12809. https://doi.org/10.1073/pnas.1300926110 Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. PNAS 102:11070–11075. https://doi.org/10.1073/pnas.0504978102 Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a Li L, Abou-Samra E, Ning Z et al (2019) An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat Commun 10:4146. https://doi.org/10.1038/s41467-019-12087-8 Lo C, Marculescu R (2017) MPLasso: Inferring microbial association networks using prior microbial knowledge. PLoS Comput Biol 13:e1005915. https://doi.org/10.1371/journal.pcbi.1005915 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379. https://doi.org/10.1056/NEJMra1600266 Ma W, Zhang L, Zeng P et al (2017) An analysis of human microbe–disease associations. Brief Bioinform 18:85–97. https://doi.org/10.1093/bib/bbw005 MacArthur BD, Lachmann A, Lemischka IR, Ma’ayan A (2010) GATE: software for the analysis and visualization of high-dimensional time series expression data. Bioinformatics 26:143–144. https://doi.org/10.1093/bioinformatics/btp628 Magni P, Ferrazzi F, Sacchi L, Bellazzi R (2008) TimeClust: a clustering tool for gene expression time series. Bioinformatics 24:430–432. https://doi.org/10.1093/bioinformatics/btm605 Magnúsdóttir S, Heinken A, Kutt L et al (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat Biotechnol 35:81–89. https://doi.org/10.1038/nbt.3703 Maithreye R, Mande SS (2007) Modelling of the regulation of the hilA promoter of type three secretion system of Salmonella enterica serovar Typhimurium. Syst Synth Biol 1:129–137. https://doi.org/10.1007/s11693-007-9009-5 Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339. https://doi.org/10.1136/gutjnl-2015-309990 Mathipa MG, Thantsha MS (2017) Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens 9:28. https://doi.org/10.1186/s13099-017-0178-9 McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531 Mellbye BL, Giguere AT, Murthy GS et al (2018) Genome-scale, constraint-based modeling of nitrogen oxide fluxes during coculture of Nitrosomonas europaea and Nitrobacter winogradskyi. mSystems 3:e00170-e217. https://doi.org/10.1128/mSystems.00170-17 Menees S, Chey W (2018) The gut microbiome and irritable bowel syndrome. F1000Res. https://doi.org/10.12688/f1000research.14592.1 Mills JP, Rao K, Young VB (2018) Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol 34:3. https://doi.org/10.1097/MOG.0000000000000410 Mounier J, Monnet C, Vallaeys T et al (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74:172–181. https://doi.org/10.1128/AEM.01338-07 Nagpal S, Baksi KD, Kuntal BK, Mande SS (2020a) NetConfer: a web application for comparative analysis of multiple biological networks. BMC Biol. https://doi.org/10.1186/s12915-020-00781-9 Nagpal S, Singh R, Yadav D, Mande SS (2020b) MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks. Nucleic Acids Res 48:W572–W579. https://doi.org/10.1093/nar/gkaa254 Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582. https://doi.org/10.1073/pnas.0601602103 Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584. https://doi.org/10.1038/nrgastro.2017.88 Nissen L, Casciano F, Gianotti A (2020) Intestinal fermentation in vitro models to study food-induced gut microbiota shift: an updated review. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnaa097 Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28:245–248. https://doi.org/10.1038/nbt.1614 Ou J, Carbonero F, Zoetendal EG et al (2013) Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98:111–120. https://doi.org/10.3945/ajcn.112.056689 Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93. https://doi.org/10.1086/282586 Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10:1200–1202. https://doi.org/10.1038/nmeth.2658 Peng L-H, Yin J, Zhou L et al (2018) Human microbe-disease association prediction based on adaptive boosting. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02440 Perisin MA, Sund CJ (2018) Human gut microbe co-cultures have greater potential than monocultures for food waste remediation to commodity chemicals. Sci Rep 8:15594. https://doi.org/10.1038/s41598-018-33733-z Pinna NK, Anjana RM, Saxena S et al (2021) Trans-ethnic gut microbial signatures of prediabetic subjects from India and Denmark. Genome Med 13:36. https://doi.org/10.1186/s13073-021-00851-9 Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalog established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821 Qu J, Zhao Y, Yin J (2019) Identification and analysis of human microbe-disease associations by matrix decomposition and label propagation. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00291 Rizvi A, Shankar A, Chatterjee A et al (2019) Rewiring of Metabolic network in Mycobacterium tuberculosis during adaptation to different stresses. Front Microbiol 10:2417 Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616 Rouanet A, Bolca S, Bru A et al (2020) Live biotherapeutic products, a road map for safety assessment. Front Med (lausanne). https://doi.org/10.3389/fmed.2020.00237 Ruan Q, Dutta D, Schwalbach MS et al (2006) Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22:2532–2538. https://doi.org/10.1093/bioinformatics/btl417 Saadatpour A, Albert R (2013) Boolean modeling of biological regulatory networks: a methodology tutorial. Methods 62:3–12. https://doi.org/10.1016/j.ymeth.2012.10.012 Salavert F, García-Alonso L, Sánchez R et al (2016) Web-based network analysis and visualization using cell maps. Bioinformatics 32:3041–3043. https://doi.org/10.1093/bioinformatics/btw332 Santillán M, Mackey MC (2004) Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon. Biophys J 86:1282–1292. https://doi.org/10.1016/S0006-3495(04)74202-2 Scheffer M, Bascompte J, Brock WA et al (2009) Early-warning signals for critical transitions. Nature 461:53–59. https://doi.org/10.1038/nature08227 Schmidt TSB, Raes J, Bork P (2018) the human gut microbiome: from association to modulation. Cell 172:1198–1215. https://doi.org/10.1016/j.cell.2018.02.044 Sedlar K, Videnska P, Skutkova H et al (2016) Bipartite graphs for visualization analysis of microbiome data: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform. https://doi.org/10.4137/EBO.S38546 Sen P, Orešič M (2019) Metabolic modeling of human gut microbiota on a genome scale: an overview. Metabolites 9:22. https://doi.org/10.3390/metabo9020022 Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303 Shaw GT-W, Pao Y-Y, Wang D (2016) MetaMIS: a metagenomic microbial interaction simulator based on microbial community profiles. BMC Bioinform 17:488. https://doi.org/10.1186/s12859-016-1359-0 Singh R, Haque MM, Mande SS (2019) Lifestyle-induced microbial gradients: an Indian perspective. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02874 Sola-Oladokun B, Culligan EP, Sleator RD (2017) Engineered probiotics: applications and biological containment. Annu Rev Food Sci Technol 8:353–370. https://doi.org/10.1146/annurev-food-030216-030256 Srivastava D, Baksi KD, Kuntal BK, Mande SS (2019) “EviMass”: a literature evidence-based miner for human microbial associations. Front Genet. https://doi.org/10.3389/fgene.2019.00849 Steele JA, Countway PD, Xia L et al (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J 5:1414–1425. https://doi.org/10.1038/ismej.2011.24 Stubbendieck RM, Vargas-Bautista C, Straight PD (2016) Bacterial communities: interactions to scale. Front Microbiol 7:1234. https://doi.org/10.3389/fmicb.2016.01234 Tandon D, Haque MM, Mande SS (2016) Inferring intra-community microbial interaction patterns from metagenomic datasets using associative rule mining techniques. PLoS ONE 11:e0154493. https://doi.org/10.1371/journal.pone.0154493 Tang L (2019) In vitro intestine model for gut microbiome. Nat Methods 16:578–578. https://doi.org/10.1038/s41592-019-0489-5 Tilg H, Cani PD, Mayer EA (2016) Gut microbiome and liver diseases. Gut 65:2035–2044. https://doi.org/10.1136/gutjnl-2016-312729 Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ. https://doi.org/10.1136/bmj.k2179 Valitutti F, Cucchiara S, Fasano A (2019) Celiac disease and the microbiome. Nutrients. https://doi.org/10.3390/nu11102403 Venturelli OS, Carr AC, Fisher G et al (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol. https://doi.org/10.15252/msb.20178157 Wang Y, Thilmony R, Gu YQ (2014) NetVenn: an integrated network analysis web platform for gene lists. Nucleic Acids Res 42:W161-166. https://doi.org/10.1093/nar/gku331 Watane A, Cavuoto KM, Banerjee S, Galor A (2019) The microbiome and ocular surface disease. Curr Ophthalmol Rep 7:196–203. https://doi.org/10.1007/s40135-019-00217-w Watts SC, Ritchie SC, Inouye M, Holt KE (2019) FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35:1064–1066. https://doi.org/10.1093/bioinformatics/bty734 Yadav D, Ghosh TS, Mande SS (2016) Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups. Gut Pathog 8:1–21. https://doi.org/10.1186/s13099-016-0099-z Yang J, Li D, Yang Z et al (2020) Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families. Gut Microbes 11:918–929. https://doi.org/10.1080/19490976.2020.1712986 Zhou G, Xia J (2018) OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 46:W514–W522. https://doi.org/10.1093/nar/gky510 Zhou J, Deng Y, Luo F et al (2010) Functional molecular ecological networks. mBBol. https://doi.org/10.1128/mBio.00169-10 Zhou G, Soufan O, Ewald J et al (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47:W234–W241. https://doi.org/10.1093/nar/gkz240 Zhuang K, Izallalen M, Mouser P et al (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316. https://doi.org/10.1038/ismej.2010.117 Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8:e1002363. https://doi.org/10.1371/journal.pcbi.1002363