Towards Building a Plant Cell Atlas
Tài liệu tham khảo
Jones, 2008, The impact of Arabidopsis on human health: diversifying our portfolio, Cell, 133, 939, 10.1016/j.cell.2008.05.040
Hooke, 1665
Schleiden, 1838, Contributions to our knowledge of phytogenesis, Arch. Anat. Physiol. Wiss. Med., 13, 137
Schwann, 1838, Ueber die analogie in der structur und dem wachsthum der thiere und pflanzen, Neue Not Geb Nat Heil
Schwann, 1839
Rhee, 2014, Towards revealing the functions of all genes in plants, Trends Plant Sci., 19, 212, 10.1016/j.tplants.2013.10.006
Waese, 2017, ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology, Plant Cell, 29, 1806, 10.1105/tpc.17.00073
Cai, 2018, Experimental and computational framework for a dynamic protein atlas of human cell division, Nature, 561, 411, 10.1038/s41586-018-0518-z
Shaw, 2013, Smaller, faster, brighter: advances in optical imaging of living plant cells, Annu. Rev. Plant Biol., 64, 351, 10.1146/annurev-arplant-042110-103843
Shaner, 2005, A guide to choosing fluorescent proteins, Nat. Methods, 2, 905, 10.1038/nmeth819
Tian, 2004, High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta, Plant Physiol., 135, 25, 10.1104/pp.104.040139
Roberts, 2017, Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization, Mol. Biol. Cell, 28, 2854, 10.1091/mbc.e17-03-0209
Abyadeh, 2017, Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation, Int. Nano Lett., 7, 291, 10.1007/s40089-017-0224-0
Zhao, 2017, Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers, Nat. Plants, 3, 956, 10.1038/s41477-017-0063-z
Cao, 2018, Universal intracellular biomolecule delivery with precise dosage control, Sci. Adv., 4, 10.1126/sciadv.aat8131
Zanetti, 2013, The structure of the COPII transport-vesicle coat assembled on membranes, eLife, 2, 10.7554/eLife.00951
Schwille, 1997, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophys. J., 72, 1878, 10.1016/S0006-3495(97)78833-7
Petrasek, 2010, Scanning FCS for the characterization of protein dynamics in live cells, Methods Enzymol., 472, 317, 10.1016/S0076-6879(10)72005-X
Förster, 1948, Zwischenmolekulare energiewanderung und fluoreszenz, Annalen der Physik, 437, 55, 10.1002/andp.19484370105
Xie, 2011, Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells, Methods Mol. Biol., 680, 3, 10.1007/978-1-60761-901-7_1
Kerppola, 2008, Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells, Annu. Rev. Biophys., 37, 465, 10.1146/annurev.biophys.37.032807.125842
Hein, 2015, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, 163, 712, 10.1016/j.cell.2015.09.053
Huttlin, 2015, The BioPlex network: a systematic exploration of the human interactome, Cell, 162, 425, 10.1016/j.cell.2015.06.043
Kirkwood, 2013, Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics, Mol. Cell. Proteomics, 12, 3851, 10.1074/mcp.M113.032367
Havugimana, 2012, A census of human soluble protein complexes, Cell, 150, 1068, 10.1016/j.cell.2012.08.011
Rolland, 2014, A proteome-scale map of the human interactome network, Cell, 159, 1212, 10.1016/j.cell.2014.10.050
Rual, J.F. et al. (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178
Drew, 2017, Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes, Mol. Syst. Biol., 13, 932, 10.15252/msb.20167490
Han, 2018, Proximity labeling: spatially resolved proteomic mapping for neurobiology, Curr. Opin. Neurobiol., 50, 17, 10.1016/j.conb.2017.10.015
Chen, 2017, Proximity-dependent labeling methods for proteomic profiling in living cells, Wiley Interdiscip. Rev. Dev. Biol., 6, e272, 10.1002/wdev.272
Rees, 2015, Protein neighbors and proximity proteomics, Mol. Cell. Proteomics, 14, 2848, 10.1074/mcp.R115.052902
Picelli, 2013, Smart-seq2 for sensitive full-length transcriptome profiling in single cells, Nat. Methods, 10, 1096, 10.1038/nmeth.2639
Hashimshony, 2012, CEL-Seq: single-cell RNA-seq by multiplexed linear amplification, Cell Rep., 2, 666, 10.1016/j.celrep.2012.08.003
Jaitin, 2014, Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types, Science, 343, 776, 10.1126/science.1247651
Rosenberg, 2018, Scaling single cell transcriptomics through split pool barcoding, Science, 360, 176, 10.1126/science.aam8999
Cao, 2017, Comprehensive single-cell transcriptional profiling of a multicellular organism, Science, 357, 661, 10.1126/science.aam8940
Ziegenhain, 2017, Comparative analysis of single-cell RNA sequencing methods, Mol. Cell, 65, 631, 10.1016/j.molcel.2017.01.023
Gifford, 2008, Cell-specific nitrogen responses mediate developmental plasticity, Proc. Natl. Acad. Sci. U. S. A., 105, 803, 10.1073/pnas.0709559105
Dinneny, 2008, Cell identity mediates the response of Arabidopsis roots to abiotic stress, Science, 320, 942, 10.1126/science.1153795
Ching, 2018, Opportunities and obstacles for deep learning in biology and medicine, J. R. Soc. Interface, 20170387, 10.1098/rsif.2017.0387
O’Driscoll, 2013, ‘Big data’, Hadoop and cloud computing in genomics, J. Biomed. Inform., 46, 774, 10.1016/j.jbi.2013.07.001
Sommer, 2013, Machine learning in cell biology – teaching computers to recognize phenotypes, J. Cell Sci., 126, 5529, 10.1242/jcs.123604
Christiansen, 2018, In silico labeling: predicting fluorescent labels in unlabeled images, Cell, 173, 792, 10.1016/j.cell.2018.03.040
Liu, 2017, Visualizing high-dimensional data: advances in the past decade, IEEE Trans. Vis. Comput. Graph., 23, 1249, 10.1109/TVCG.2016.2640960
Zhukova, 2015, Mimoza: web-based semantic zooming and navigation in metabolic networks, BMC Syst. Biol., 9, 10, 10.1186/s12918-015-0151-5
Hu, 2007, Towards zoomable multidimensional maps of the cell, Nat. Biotechnol., 25, 547, 10.1038/nbt1304
The Gene Ontology, C, 2017, Expansion of the Gene Ontology knowledgebase and resources, Nucleic Acids Res., 45, D331, 10.1093/nar/gkw1108
Diehl, 2016, The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability, J. Biomed. Semantics, 7, 44, 10.1186/s13326-016-0088-7
Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676, 10.1038/nmeth.2019
Hiner, 2017, ImageJ-MATLAB: a bidirectional framework for scientific image analysis interoperability, Bioinformatics, 33, 629, 10.1093/bioinformatics/btw681
Regev, 2017, The Human Cell Atlas, eLife, 6, 10.7554/eLife.27041
Johansson, 2017, A bright future for serial femtosecond crystallography with XFELs, Trends Biochem. Sci., 42, 749, 10.1016/j.tibs.2017.06.007
Ji, 2016, Technologies for imaging neural activity in large volumes, Nat. Neurosci., 19, 1154, 10.1038/nn.4358
Campbell, 2014, Time resolved electron microscopy for in situ experiments, Appl. Phys. Rev., 1, 041101, 10.1063/1.4900509
Wintle, 2017, A transatlantic perspective on 20 emerging issues in biological engineering, eLife, 6, 10.7554/eLife.30247
