Towards Building a Plant Cell Atlas

Trends in Plant Science - Tập 24 - Trang 303-310 - 2019
Seung Y. Rhee1, Kenneth D. Birnbaum2, David W. Ehrhardt1
1Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA
2New York University, Department of Biology, New York, NY 10003, USA

Tài liệu tham khảo

Jones, 2008, The impact of Arabidopsis on human health: diversifying our portfolio, Cell, 133, 939, 10.1016/j.cell.2008.05.040 Hooke, 1665 Schleiden, 1838, Contributions to our knowledge of phytogenesis, Arch. Anat. Physiol. Wiss. Med., 13, 137 Schwann, 1838, Ueber die analogie in der structur und dem wachsthum der thiere und pflanzen, Neue Not Geb Nat Heil Schwann, 1839 Rhee, 2014, Towards revealing the functions of all genes in plants, Trends Plant Sci., 19, 212, 10.1016/j.tplants.2013.10.006 Waese, 2017, ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology, Plant Cell, 29, 1806, 10.1105/tpc.17.00073 Cai, 2018, Experimental and computational framework for a dynamic protein atlas of human cell division, Nature, 561, 411, 10.1038/s41586-018-0518-z Shaw, 2013, Smaller, faster, brighter: advances in optical imaging of living plant cells, Annu. Rev. Plant Biol., 64, 351, 10.1146/annurev-arplant-042110-103843 Shaner, 2005, A guide to choosing fluorescent proteins, Nat. Methods, 2, 905, 10.1038/nmeth819 Tian, 2004, High-throughput fluorescent tagging of full-length Arabidopsis gene products in planta, Plant Physiol., 135, 25, 10.1104/pp.104.040139 Roberts, 2017, Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization, Mol. Biol. Cell, 28, 2854, 10.1091/mbc.e17-03-0209 Abyadeh, 2017, Electrosprayed chitosan nanoparticles: facile and efficient approach for bacterial transformation, Int. Nano Lett., 7, 291, 10.1007/s40089-017-0224-0 Zhao, 2017, Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers, Nat. Plants, 3, 956, 10.1038/s41477-017-0063-z Cao, 2018, Universal intracellular biomolecule delivery with precise dosage control, Sci. Adv., 4, 10.1126/sciadv.aat8131 Zanetti, 2013, The structure of the COPII transport-vesicle coat assembled on membranes, eLife, 2, 10.7554/eLife.00951 Schwille, 1997, Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution, Biophys. J., 72, 1878, 10.1016/S0006-3495(97)78833-7 Petrasek, 2010, Scanning FCS for the characterization of protein dynamics in live cells, Methods Enzymol., 472, 317, 10.1016/S0076-6879(10)72005-X Förster, 1948, Zwischenmolekulare energiewanderung und fluoreszenz, Annalen der Physik, 437, 55, 10.1002/andp.19484370105 Xie, 2011, Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells, Methods Mol. Biol., 680, 3, 10.1007/978-1-60761-901-7_1 Kerppola, 2008, Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells, Annu. Rev. Biophys., 37, 465, 10.1146/annurev.biophys.37.032807.125842 Hein, 2015, A human interactome in three quantitative dimensions organized by stoichiometries and abundances, Cell, 163, 712, 10.1016/j.cell.2015.09.053 Huttlin, 2015, The BioPlex network: a systematic exploration of the human interactome, Cell, 162, 425, 10.1016/j.cell.2015.06.043 Kirkwood, 2013, Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics, Mol. Cell. Proteomics, 12, 3851, 10.1074/mcp.M113.032367 Havugimana, 2012, A census of human soluble protein complexes, Cell, 150, 1068, 10.1016/j.cell.2012.08.011 Rolland, 2014, A proteome-scale map of the human interactome network, Cell, 159, 1212, 10.1016/j.cell.2014.10.050 Rual, J.F. et al. (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 Drew, 2017, Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes, Mol. Syst. Biol., 13, 932, 10.15252/msb.20167490 Han, 2018, Proximity labeling: spatially resolved proteomic mapping for neurobiology, Curr. Opin. Neurobiol., 50, 17, 10.1016/j.conb.2017.10.015 Chen, 2017, Proximity-dependent labeling methods for proteomic profiling in living cells, Wiley Interdiscip. Rev. Dev. Biol., 6, e272, 10.1002/wdev.272 Rees, 2015, Protein neighbors and proximity proteomics, Mol. Cell. Proteomics, 14, 2848, 10.1074/mcp.R115.052902 Picelli, 2013, Smart-seq2 for sensitive full-length transcriptome profiling in single cells, Nat. Methods, 10, 1096, 10.1038/nmeth.2639 Hashimshony, 2012, CEL-Seq: single-cell RNA-seq by multiplexed linear amplification, Cell Rep., 2, 666, 10.1016/j.celrep.2012.08.003 Jaitin, 2014, Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types, Science, 343, 776, 10.1126/science.1247651 Rosenberg, 2018, Scaling single cell transcriptomics through split pool barcoding, Science, 360, 176, 10.1126/science.aam8999 Cao, 2017, Comprehensive single-cell transcriptional profiling of a multicellular organism, Science, 357, 661, 10.1126/science.aam8940 Ziegenhain, 2017, Comparative analysis of single-cell RNA sequencing methods, Mol. Cell, 65, 631, 10.1016/j.molcel.2017.01.023 Gifford, 2008, Cell-specific nitrogen responses mediate developmental plasticity, Proc. Natl. Acad. Sci. U. S. A., 105, 803, 10.1073/pnas.0709559105 Dinneny, 2008, Cell identity mediates the response of Arabidopsis roots to abiotic stress, Science, 320, 942, 10.1126/science.1153795 Ching, 2018, Opportunities and obstacles for deep learning in biology and medicine, J. R. Soc. Interface, 20170387, 10.1098/rsif.2017.0387 O’Driscoll, 2013, ‘Big data’, Hadoop and cloud computing in genomics, J. Biomed. Inform., 46, 774, 10.1016/j.jbi.2013.07.001 Sommer, 2013, Machine learning in cell biology – teaching computers to recognize phenotypes, J. Cell Sci., 126, 5529, 10.1242/jcs.123604 Christiansen, 2018, In silico labeling: predicting fluorescent labels in unlabeled images, Cell, 173, 792, 10.1016/j.cell.2018.03.040 Liu, 2017, Visualizing high-dimensional data: advances in the past decade, IEEE Trans. Vis. Comput. Graph., 23, 1249, 10.1109/TVCG.2016.2640960 Zhukova, 2015, Mimoza: web-based semantic zooming and navigation in metabolic networks, BMC Syst. Biol., 9, 10, 10.1186/s12918-015-0151-5 Hu, 2007, Towards zoomable multidimensional maps of the cell, Nat. Biotechnol., 25, 547, 10.1038/nbt1304 The Gene Ontology, C, 2017, Expansion of the Gene Ontology knowledgebase and resources, Nucleic Acids Res., 45, D331, 10.1093/nar/gkw1108 Diehl, 2016, The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability, J. Biomed. Semantics, 7, 44, 10.1186/s13326-016-0088-7 Schindelin, 2012, Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676, 10.1038/nmeth.2019 Hiner, 2017, ImageJ-MATLAB: a bidirectional framework for scientific image analysis interoperability, Bioinformatics, 33, 629, 10.1093/bioinformatics/btw681 Regev, 2017, The Human Cell Atlas, eLife, 6, 10.7554/eLife.27041 Johansson, 2017, A bright future for serial femtosecond crystallography with XFELs, Trends Biochem. Sci., 42, 749, 10.1016/j.tibs.2017.06.007 Ji, 2016, Technologies for imaging neural activity in large volumes, Nat. Neurosci., 19, 1154, 10.1038/nn.4358 Campbell, 2014, Time resolved electron microscopy for in situ experiments, Appl. Phys. Rev., 1, 041101, 10.1063/1.4900509 Wintle, 2017, A transatlantic perspective on 20 emerging issues in biological engineering, eLife, 6, 10.7554/eLife.30247