Towards Automated Tracking of Initiation and Propagation of Cracks in Aluminium Alloy Coupons Using Thermoelastic Stress Analysis

C. A. Middleton1, Andre Gaio1, Richard Greene2, Eann A. Patterson1
1School of Engineering, University of Liverpool, The Quadrangle, Brownlow Hill, Liverpool, L69 3GH, UK
2Strain Solutions Ltd, Dunston Innovation Centre, Dunston Road, Chesterfield, Derbyshire, S41 8NG, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sakagami, T.: Remote nondestructive evaluation technique using infrared thermography for fatigue cracks in steel bridges. Fatigue Fract. Eng. Mater. Struct. 38, 755–779 (2015). https://doi.org/10.1111/ffe.12302

Rastogi, P., Hack, E. (eds.): Optical Methods for Solid Mechanics. Wiley-VCH, Weinheim (2012)

Epstein, J.S. (ed.): Experimental Techniques in Fracture. VCH, Weinheim (1993)

Patterson, E.A., Feligiotti, M., Hack, E.: On the integration of validation, quality assurance and non-destructive evaluation. J. Strain Anal. Eng. Des. 48, 48–58 (2013). https://doi.org/10.1177/0309324712444681

Greene, R.J., Patterson, E.A., Rowlands, R.E.: Thermoelastic stress analysis. In: Sharpe, W.N. (ed.) Springer Handbook of Experimental Solid Mechanics, pp. 743–767. Springer, New York (2008)

Tighe, R.C., Howell, G.P., Tyler, J.P., Lormor, S., Dulieu-Barton, J.M.: Stress based non-destructive evaluation using thermographic approaches: from laboratory trials to on-site assessment. NDT E Int. 84, 76–88 (2016). https://doi.org/10.1016/j.ndteint.2016.08.005

Robinson, A.F., Dulieu-Barton, J.M., Quinn, S., Burguete, R.L.: Paint coating characterization for thermoelastic stress analysis of metallic. Meas. Sci. Techol. (2010). https://doi.org/10.1088/0957-0233/21/8/085502

Rajic, N., Street, N., Brooks, C., Galea, S.: Full field stress measurement for in situ structural health monitoring of airframe components and repairs. In: 7th European Workshop on Structural Health Monitoring (2014)

Dulieu-Barton, J.M.: Introduction to thermoelastic stress analysis. Strain 35(2), 35–39 (1999)

Diaz, F.A., Patterson, E.A., Tomlinson, R.A., Yates, J.R.: Measuring stress intensity factors during fatigue crack growth using thermoelasticity. Fatigue Fract. Eng. Mater. Struct. 27, 571–583 (2004). https://doi.org/10.1111/j.1460-2695.2004.00782.x

Ancona, F., Palumbo, D., De Finis, R., Demelio, G.P., Galietti, U.: Automatic procedure for evaluating the Paris Law of martensitic and austenitic stainless steels by means of thermal methods. Eng. Fract. Mech. 163, 206–219 (2016). https://doi.org/10.1016/j.engfracmech.2016.06.016

Rajic, N., Brooks, C.: Automated crack detection and crack growth rate measurement using thermoelasticity. Procedia Eng. 188, 463–470 (2017). https://doi.org/10.1016/j.proeng.2017.04.509

Hack, E., Fruehmann, R.K., Roos, R., Feligiotti, M., Schuetz, P., Tyler, J.P., Dulieu-Barton, J.M.: Flaw and damage assessment in torsionally loaded CFRP cylinders using experimental and numerical methods. Compos. Struct. 132, 109–121 (2015). https://doi.org/10.1016/j.compstruct.2015.05.025

Fruehmann, R.K., Dulieu-Barton, J.M., Quinn, S.: Thermoelastic stress and damage analysis using transient loading. Exp. Mech. 50, 1075–1086 (2010). https://doi.org/10.1007/s11340-009-9295-9

Rajic, N., Galea, S.: Thermoelastic stress analysis and structural health monitoring: an emerging nexus. Struct. Heal. Monit. 14, 57–72 (2015). https://doi.org/10.1177/1475921714548936

Sakagami, T., Kubo, S., Tamura, E., Nishimura, T.: Identification of plastic-zone based on double frequency lock in thermographic temperature measurement. In: International Conference on Fracture ICF11 (2005)

Paynter, R.J.H., Dutton, A.G.: The use of a second harmonic correlation to detect damage in composite structures using thermoelastic stress measurements. Strain 39, 73–78 (2003). https://doi.org/10.1046/j.1475-1305.2003.00056.x

Backman, D., Cowal, C., Patterson, E.A.: Analysis of the effects of cold expansion of holes using thermoelasticity and image correlation. Fatigue Fract. Eng. Mater. Struct. 33, 859–870 (2010). https://doi.org/10.1111/j.1460-2695.2010.01472.x

Rajic, N., Rowlands, D.: Thermoelastic stress analysis with a compact low-cost microbolometer system. Quant. Infrared Thermogr. J. 10, 135–158 (2013). https://doi.org/10.1080/17686733.2013.800688

Rajic, N., Street, N.: A performance comparison between cooled and uncooled infrared detectors for thermoelastic stress analysis. Quant. Infrared Thermogr. J. 11, 207–221 (2014). https://doi.org/10.1080/17686733.2014.962835

BSI Standards Publication Mechanical joining—Destructive testing of joints—Specimen dimensions and test procedure for tensile shear testing of single joints. BS EN ISO 12996:2013. (2013)

Eurocode 9: Design of aluminium structures - Part 1-1 : General structural rules. BS EN 1999-1-1 :2007 + A 1 :2009. (2009)

Díaz, F.A., Yates, J.R., Patterson, E.A.: Some improvements in the analysis of fatigue cracks using thermoelasticity. Int. J. Fatigue 26, 365–376 (2004). https://doi.org/10.1016/j.ijfatigue.2003.08.018

Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artif. Intell. 17, 185–203 (1981)

Sakagami, T., Yamaguchi, N., Kubo, S., Nishimura, T.: A new full-field motion compensation technique for infrared stress measurement using digital image correlation. J. Strain Anal. Eng. Des. 43, 539–549 (2008). https://doi.org/10.1243/03093247JSA360