Towards 5G: Techno-economic analysis of suitable use cases

Juan Riol Martín1, Raquel Pérez Leal1, Julio Navío-Marco2
1Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Av. de la Universidad 30, 28911, Leganés, Spain
2UNED University, P° Senda del Rey 11, 28040, Madrid, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alnoman, A., & Anpalagan, A. (2017). Towards the fulfillment of 5G network requirements: Technologies and challenges. Telecommunication Systems, 65(1), 101–116.

Alsharif, M. H., & Nordin, R. (2017). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems, 64(4), 617–637. https://doi.org/10.1007/s11235-016-0195-x .

Bai, Y,. Zhou, J., Chen, L. (2009) Hybrid spectrum usage for overlaying LTE macrocell and femtocell, IEEE GLOBECOM.

Bartelt, J., Vucic, N., Camps-Mur, D., Garcia-Villegas, E., Demirkol, I., Fehske, A., Grieger, M., Tzanakaki, A., Gutiérrez, J., Grass, E., Lyberopoulos, G., & Fettweis, G. (2017). 5G transport network requirements for the next generation fronthaul interface. EURASIP Journal on Wireless Communications and Networking, 89. https://doi.org/10.1186/s13638-017-0874-7 .

Basilier, H., Frid, L., Hall, G., Nilsson, G., Roeland, D., Ruine, G., Stuempert, M.A., (2016). A vision of the 5G Core: Flexibility for new business opportunities. Ericsson 2016. https://www.ericsson.com/49eac7/assets/local/publications/ericsson-technology-review/docs/2016/etr-5g-core-vision.pdf .

Bouras, C., Kokkinos, V., Kollia, A., & Papazois, A. (2015). Techno-economic analysis of ultra-dense and DAS deployments in mobile 5G (pp. 241–245). Brussels: International Symposium on Wireless Communication Systems (ISWCS).

Bouras, C., Ntarzanos, P., & Papazois, A. (2016). Cost modeling for SDN/NFV based mobile 5G networks (pp. 56–61). Lisbon: 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). https://doi.org/10.1109/ICUMT.2016.7765232 .

Breuer, D., Weis, E., Grobe, K., Krauß, S., Musumeci, F., Torrijos Gijon, J., Skubic, B. (2016) 5G transport in future access networks. ECOC 2016; 42nd European Conference on Optical Communication, Düsseldorf, 1–3.

Costanzo, S., Xenakis, D., Passas, N., Merakos, L.. (2014) OpeNB: A framework for virtualizing base stations in LTE networks. Communications (ICC), 2014 IEEE International Conference, 3148–3153. https://doi.org/10.1109/ICC.2014.6883805 .

Ericsson (2015) 5G Radio Access: Technologies and Capabilities. https://www.ericsson.com/49ebb7/assets/local/news/2015/2/wp-5g.pdf .

Ericsson (2016). Western Europe Ericsson Mobility Report. https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016-rwe.pdf (Last access on 31st July, 2017).

GSMA Intelligence (2017). The 5G era: Age of boundless connectivity and intelligent automation. https://www.gsmaintelligence.com/research/2017/02/the-5g-era-age-of-boundless-connectivity-and-intelligent-automation/614/ .

Gunasekaran, V., Harmantzis, F. C., & Ryan, K. (2008). Strategic investment analysis for migration beyond 3G wireless networks. NETNOMICS: Economic Research and Electronic Networking, 9(1), 47–75. https://doi.org/10.1007/s11066-008-9031-0 .

Harno, J., Kumar, K. R., Eskedal, T. G., Venturin, R., Katsianis, D., & Varoutas, D. (2007). Techno-economic evaluation of 3G and beyond mobile business alternatives. NETNOMICS: Economic Research and Electronic Networking, 8(1–2), 5–23. https://doi.org/10.1007/s11066-008-9026-x .

ITU, Focus Group on IMT-2020, (Established 2015-05; Terminated 2016-12). https://www.itu.int/en/ITU-T/focusgroups/imt-2020/Pages/default.aspx (Accessed on 31st August 2018).

ITU, ITU-T Y.3302 (2017). Functional architecture of software-defined networking. Recommendation.

ITU (2012). ITU-T Y.3011, Framework of network virtualization for future networks. Recommendation.

ITU (2016). Geneva Mission Briefing Series, Emerging Trends in 5G/IMT-2020. https://www.itu.int/en/membership/Documents/missions/GVA-mission-briefing-5G-28Sept2016.pdf (Last access on 31st July, 2017).

Jiang, M., Xenakis, D., Costanzo, S., Passas, N., Mahmoodi, T. (2017). Radio resource sharing as a service in 5G: A software-defined networking approach. Computer Communications 107, 13–29. https://doi.org/10.1016/j.comcom.2017.03.006 .

Kaleem, Z., Ahmad, A., & Rehmani, M. H. (2018). Neighbors’ interference situation-aware power control scheme for dense 5G mobile communication system. Telecommunication Systems, 67(3), 443–450. https://doi.org/10.1007/s11235-017-0350-z .

Katsigiannis, M., Smura, T., Casey, T., & Sorri, A. (2013). Techno-economic modeling of value network configurations for public wireless local area access. NETNOMICS: Economic Research and Electronic Networking, 14(1–2), 27–46. https://doi.org/10.1007/s11066-013-9077-5 .

Kliks, A., Musznicki, B., Kowalik, K., & Kryszkiewicz, P. (2018). Perspectives for resource sharing in 5G networks. Telecommunication Systems, 68(4), 605–619.

Magdalinos, P., Barmpounakis, S., Spapis, P., Kaloxylos, A., Kyprianidis, G., Kousaridas, A., Alonistioti, N., & Zhou, C. (2017). A context extraction and profiling engine for 5G network resource mapping. Computer Communications, 109, 184–201. https://doi.org/10.1016/j.comcom.2017.06.003 .

Neokosmidis, I., Rokkas, T., Parker, M., Koczian. G., Walker, S., Shuaib Siddiqui, M., Escalona. E. (2016) Assessment of socio-techno-economic factors affecting the market adoption and evolution of 5G networks: Evidence from the 5G-PPP CHARISMA project. Telematics and Informatics: Volume 34, Issue 5, 2017, Pages 572–589.

Oughton, E. J., & Frias, Z. (2018). The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommunications Policy, 42(8), 636–652.

Qualcomm Technologies, Inc (2016). Making 5G NR a reality. https://www.qualcomm.com/media/documents/files/whitepaper-making-5g-nr-a-reality.pdf .

Smail, G. and Weijia, J. (2017) Techno-economic analysis and prediction for the deployment of 5G mobile network, 20th conference on innovations in clouds, internet and networks (ICIN), Paris. 9–16. https://doi.org/10.1109/ICIN.2017.7899243 .

Sutton, A. (2017). 5G Network Architecture And Design. British Telecom (BT). https://www.slideshare.net/3G4GLtd/5g-network-architecture-and-design (Last access on 31st July, 2017).

Tech4i2 (2016). Real wireless CONNECT, Trinity College Dublin and InterDigital for the European Commission. Identification and quantification of key socio-economic data to support strategic planning for the introduction of 5G in Europe.

3GPP. Release 15, http://www.3gpp.org/release-15 (Accessed on 31st August, 2018).

3GPP. Release 16, http://www.3gpp.org/release-16 (Accessed on 31st August, 2018).

3GPP TS 36.331 V14.9.0 (2018). Evolved Universal Terrestrial Radio Access (E-UTRAN), Radio Resource Control (RRC); Protocol specification (Release 13).

5G PPP Architecture Working Group (2016), View on 5G architecture. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-View-on-5G-Architecture-For-public-consultation.pdf .

5G Americas (2017) Wireless Technology Evolution Towards 5G: 3GPP Release 13 to 15 and beyond.

5G Americas (2017). 5G Services & Use Cases. https://www.5gamericas.org/5g-services-use-cases/ .

5G PPP (2015). 5G infrastructure Public Private Partnership: the next generation of communication networks and services. Section 7.