Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions

IEEE Transactions on Knowledge and Data Engineering - Tập 17 Số 6 - Trang 734-749 - 2005
Gediminas Adomavičius1, Alexander Tuzhilin2
1[Carlson Sch. of Manage., Minnesota Univ., Minneapolis, MN, USA]
2Stern School of Business, New York University, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

burke, 2000, Knowledge-Based Recommender Systems, Encyclopedia of Library and Information Systems

10.1080/088395197118109

breese, 1998, Empirical Analysis of Predictive Algorithms for Collaborative Filtering, Proc 14th Conf Uncertainty in Artificial Intelligence

10.1017/CBO9780511569616.003

10.1023/A:1026501525781

10.1145/506218.506240

billsus, 1998, Learning Collaborative Information Filters, Proc Int'l Conf Machine Learning

10.1145/301136.301208

10.1145/138859.138861

basu, 1998, Recommendation as Classification: Using Social and Content-Based Information in Recommendation, Recommender Systems Papers from 1998 Workshop

10.1145/245108.245124

10.1145/347090.347094

delgado, 1999, Memory-Based Weighted-Majority Prediction for Recommender Systems, Proc ACM SIGIR '99 Workshop Recommender Systems Algorithms and Evaluation

10.1287/mnsc.49.10.1407.17308

10.1145/963770.963776

cohen, 1999, Learning to Order Things, J Artificial Intelligence Research, 10, 243, 10.1613/jair.587

10.1007/BF00993277

sarwar, 2000, Application of Dimensionality Reduction in Recommender Systems?A Case Study, Proc ACM WebKDD Workshop

cohn, 1996, Active Learning with Statistical Models, J Artificial Intelligence Research, 4, 129, 10.1613/jair.295

condliff, 1999, Bayesian Mixed-Effects Models for Recommender Systems, Proc ACM SIGIR '99 Workshop Recommender Systems Algorithms and Evaluation

chien, 1999, A Bayesian Model for Collaborative Filtering, Proc Seventh Int'l Workshop Artificial Intelligence and Statistics

claypool, 1999, Combining Content-Based and Collaborative Filters in an Online Newspaper, Proc ACM SIGIR '99 Workshop Recommender Systems Algorithms and Evaluation

si, 2003, Flexible Mixture Model for Collaborative Filtering, Proc 20th Int'l Conf Machine Learning

10.1145/371920.372071

10.1017/CBO9780511569616.002

10.1023/A:1009804230409

10.1145/564376.564421

10.1287/mnsc.33.1.1

shani, 2002, An MDP-Based Recommender System, Proc 18th Conf Uncertainty in Artificial Intelligence

10.1145/248603.248616

10.1145/223904.223931

10.1109/CAIA.1993.366590

freund, 1998, An Efficient Boosting Algorithm for Combining Preferences, Proc 15th Int'l Conf Machine Learning

10.1023/A:1007330508534

ehrgott, 2000, Multicriteria Optimization, 10.1007/978-3-662-22199-0

fawcett, 1996, Combining Data Mining and Machine Learning for Efficient User Profiling, Proc Second Int'l Conf Knowledge Discovery and Data Mining (KDD-96)

10.1023/A:1011419012209

getoor, 1999, Using Probabilistic Relational Models for Collaborative Filtering, Proc Workshop Web Usage Analysis and User Profiling (WEBKDD '99)

10.1145/138859.138867

duda, 2001, Pattern Classification

10.1002/dir.4000030404

duchon, 1979, Splines Minimizing Rotation-Invariate Semi-Norms in Sobolev Spaces, Constructive Theory of Functions of Several Variables, 85

tran, 2000, Hybrid Recommender Systems for Electronic Commerce, Proc Knowledge-Based Electronic Markets Papers from the AAAI Workshop

10.1145/245108.245122

wade, 2003, A Grocery Cart that Holds Bread, Butter, and Preferences, New York Times

ungar, 1998, Clustering Methods for Collaborative Filtering, Proc Recommender Systems Papers from 1998 Workshop

soboroff, 1999, Combining Content and Collaboration in Text Filtering, Proc Int'l Joint Conf Artificial Intelligence Workshop Machine Learning for Information Filtering

10.1007/978-1-4615-2089-4

somlo, 2001, Adaptive Lightweight Text Filtering, Proc Fourth Int'l Symp Intelligent Data Analysis

10.1145/963770.963772

10.1145/312129.312230

10.1145/223904.223929

10.1509/jmkr.37.3.363.18779

hofmann, 1999, Probabilistic Latent Semantic Analysis, Proc 15th Conf Uncertainty in Artificial Intelligence, 289

armstrong, 2001, Principles of Forecasting?A Handbook for Researchers and Practitioners, 10.1007/978-0-306-47630-3

10.1145/860480.860483

baeza-yates, 1999, Modern Information Retrieval

10.1145/963770.963774

10.1145/963770.963775

10.1023/A:1009839827683

adomavicius, 2001, Multidimensional Recommender Systems: A Data Warehousing Approach, Proc Second Int'l Workshop Electronic Commerce (WELCOM '01)

10.1145/1055709.1055714

good, 1999, Combining Collaborative Filtering with Personal Agents for Better Recommendations, Proc Conf Am Assoc Artificial Intelligence (AAAI-99), 439

10.1145/312624.312682

10.1145/358916.358995

10.1109/4236.968830

10.1109/MIC.2003.1167344

lilien, 1992, Marketing Models

melville, 2002, Content-Boosted Collaborative Filtering for Improved Recommendations, Proc 18th Nat'l Conf Artificial Intelligence

marlin, 2003, Modeling User Rating Profiles for Collaborative Filtering, Proc 17th Ann Conf Neural Information Processing Systems (NIPS '03)

mannila, 1995, Discovering Frequent Episodes in Sequences, Proc First Int'l Conf Knowledge Discovery and Data Mining (KDD-95)

10.1006/inco.1994.1009

10.1145/336597.336662

10.1023/A:1013232803866

10.1145/604045.604094

10.1145/963770.963773

10.1109/TKDE.2004.1264816

10.1137/1.9781611972726.4

yang, 2001, On Evaluating Online Personalization, Proc Workshop Information Technology and Systems, 35

hull, 1999, The TREC-7 Filtering Track: Description and Analysis, Proc Seventh Text Retrieval Conf (TREC-7)

10.1145/956919.956922

jin, 2003, Preference-Based Graphic Models for Collaborative Filtering, Proc 19th Conf Uncertainty in Artificial Intelligence (UAI 2003)

konstan, 1998, Recommender Systems: A GroupLens Perspective, Proc Recommender Systems Papers from 1998 Workshop

10.1145/245108.245126

10.1016/B978-1-55860-377-6.50048-7

zhang, 2002, Novelty and Redundancy Detection in Adaptive Filtering, Proc 15th Ann Int l ACM SIGIR Conf, 81, 10.1145/564376.564393

10.1006/jcss.2001.1757

10.1016/B978-1-55860-335-6.50026-X

2003, Proc WEBKDD 2002?Mining Web Data for Discovering Usage Patterns and Profiles

lee, 2001, Collaborative Learning for Recommender Systems, Proc Int'l Conf Machine Learning

10.1145/383952.384012

li, 2004, Combining Usage, Content, and Structure Data to Improve Web Site Recommendation, Proc Fifth Int'l Conf Electronic Commerce and Web Technologies (EC-Web '04), 305

10.1207/s15516709cog0304_3

10.1145/192844.192905

rocchio, 1971, Relevance Feedback in Information Retrieval, SMART Retrieval System?Experiments in Automatic Document Processing

10.1108/EUM0000000007118

10.1145/502721.502737

10.1109/4236.968832

powell, 1981, Approximation Theory and Methods, 10.1017/CBO9781139171502

popescul, 2001, Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments, Proc 17th Conf Uncertainty in Artificial Intelligence

salton, 1989, Automatic Text Processing

10.1145/775047.775097

oard, 1998, Implicit Feedback for Recommender Systems, Proc Recommender Systems Papers from 1998 Workshop

10.1007/978-3-642-61342-5

10.1023/A:1006544522159

pavlov, 2002, A Maximum Entropy Approach to Collaborative Filtering in Dynamic, Sparse, High-Dimensional Domains, Proc 16th Ann Conf Neural Information Processing Systems (NIPS '02)

mooney, 1998, Book Recommending Using Text Categorization with Extracted Information, Proc Recommender Systems Papers from 1998 Workshop

nakamura, 1998, Collaborative Filtering Using Weighted Majority Prediction Algorithms, Proc 15th Int'l Conf Machine Learning

10.1287/mnsc.49.10.1344.17313

peddy, 2003, Building Solutions with Microsoft Commerce Server 2002

10.1023/A:1007369909943

pennock, 1999, Collaborative Filtering by Personality Diagnosis: A Hybrid Memory And Model-Based Approach, Proc Int'l Joint Conf Artificial Intelligence Workshop Machine Learning for Information Filtering