Toward regional hazard risk assessment: a method to geospatially inventory critical coastal infrastructure applied to the Caribbean

Austin Becker1, Noah Hallisey1, Gerald Bové2
1Department of Marine Affairs, University of Rhode Island, Kingston, USA
2University of the Virgin Islands, St Thomas, USA

Tóm tắt

AbstractHurricanes and sea level rise pose significant threats to infrastructure and critical services (e.g., air and sea travel, water treatment), and can hinder sustainable development of major economic sectors (e.g., tourism, agriculture, and international commerce). Planning for a disaster-resilient future requires high-resolution, standardized data. However, few standardized approaches exist for identifying, inventorying, and quantifying infrastructure lands at risk from natural hazards. This research presents a cost effective, standardized and replicable method to geospatially inventory critical coastal infrastructure land use and components, for use in risk assessments or other regional analyses. While traditional approaches to geospatial inventorying rely on remote sensing or techniques, such as object-based image analysis (OBIA) to estimate land use, the current approach utilizes widely available satellite imagery and a “standard operating procedure” that guides individual mappers through the process, ensuring replicability and confidence. As a pilot study to develop an approach that can be replicated for other regions, this manuscript focuses on the Caribbean. Small islands rely heavily on a small number of critical coastal infrastructure (airports, seaports, power plants, water and wastewater treatment facilities) and climate related hazards threaten sustainable development and economic growth. The Caribbean is a large and diverse area, and gaps exist between countries in the resources required for planning but much of the region lacks a comprehensive inventory of the land, infrastructure, and assets at risk. Identifying and prioritizing infrastructure at risk is the first step towards preserving the region’s economy and planning for a disaster resilient future. This manuscript uses high resolution satellite imagery to identify and geo-spatially classify critical infrastructure land area and assets, such as structures, equipment, and impervious surfaces. We identified 386 critical coastal infrastructure facilities across 28 Caribbean nations/territories, with over 19,000 ha of coastal land dedicated to critical infrastructure. The approach establishes a new standard for the creation of geospatial data to assess land use change, risk, and other research questions suitable for the regional scale, but with sufficient resolution such that individual facilities can utilize the data for local-scale analysis.

Từ khóa


Tài liệu tham khảo

Bernie, C., & Padgett, J. (2020). Probabilistic assessment of storage tanks subjected to waterborne debris impacts during storm events. doi:https://doi.org/10.1061/(ASCE)

Du J, Park K, Yu X, Zhang YJ, Ye F (2020) Massive pollutants released to Galveston Bay during hurricane Harvey: understanding their retention and pathway using Lagrangian numerical simulations. Sci Total Environ 704:135364. https://doi.org/10.1016/j.scitotenv.2019.135364

Fisher IJ, Phillips PJ, Colella KM, Fisher SC, Tagliaferri T, Foreman WT, Furlong ET (2016) The impact of onsite wastewater disposal systems on groundwater in areas inundated by Hurricane Sandy in New York and New Jersey. Mar Pollut Bull 107(2):509–517. https://doi.org/10.1016/j.marpolbul.2016.04.038

Fan H, Zipf A, Fu Q, Neis P (2014) Quality assessment for building footprints data on OpenStreetMap. Int J Geogr Inf Sci 28(4):700–719. https://doi.org/10.1080/13658816.2013.867495

Huth J, Kuenzer C, Wehrmann T, Gebhardt S, Tuan VQ, Dech S (2012) Land cover and land use classification with TWOPAC: towards automated processing for pixel- and object-based image classification. Remote Sens 4(9):2530–2553. https://doi.org/10.3390/rs4092530

IPCC (Intergovernmental Panel on Climate Change) (2014) Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.  Cambridge University Press, Cambridge, p. 688

Cashman, A., & Nagdee, M. R. (2017). Impacts of climate change on settlements and infrastructure in the coastal and Marine environments of Caribbean Small Island developing states (SIDS). Caribbean marine climate change report card: science review, 157–173

Strobl E (2012) The economic growth impact of natural disasters in developing countries: evidence from hurricane strikes in the central American and Caribbean regions. J Dev Econ 97(1):130–141. https://doi.org/10.1016/j.jdeveco.2010.12.002

Biondi EL, Guannel G (2018) Practical tools for quantitative analysis of coastal vulnerability and sea level rise impacts—application in a Caribbean island and assessment of the 1.5 °C threshold. Reg Environ Change. https://doi.org/10.1007/s10113-018-1397-4

Giardino A, Nederhoff K, Vousdoukas M (2018) Coastal hazard risk assessment for small islands: assessing the impact of climate change and disaster reduction measures on Ebeye (Marshall Islands). Reg Environ Chang 18(8):2237–2248. https://doi.org/10.1007/s10113-018-1353-3

IPCC (Intergovernmental Panel on Climate Change). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (SREX) (9781139177245). Retrieved from Cambridge: http://ebooks.cambridge.org/ref/id/CBO9781139177245

Kumar L, Taylor S (2015) Exposure of coastal built assets in the South Pacific to climate risks. Nat Clim Chang 5(11):992–996. https://doi.org/10.1038/nclimate2702

Vousdoukas MI, Mentaschi L, Voukouvalas E, Verlaan M, Feyen L (2017) Extreme sea levels on the rise along Europe’s coasts. Earth’s Future 5(3):304–323. https://doi.org/10.1002/2016EF000505

de Moel H, Jongman B, Kreibich H, Merz B, Penning-Rowsell E, Ward PJ (2015) Flood risk assessments at different spatial scales. Mitig Adapt Strateg Glob Chang 20(6):865–890. https://doi.org/10.1007/s11027-015-9654-z

Hummel MA, Berry MS, Stacey MT (2018) Sea level rise impacts on wastewater treatment systems along the U.S. coasts. Earth’s Future 6(4):622–633. https://doi.org/10.1002/2017ef000805

Pek, S., & Caldecott, B. (2020). Physical climate-related risks facing airports: an assessment of the world’s largest 100 airports briefing paper September 2020. Retrieved from Oxford, UK: https://www.smithschool.ox.ac.uk/research/sustainable-finance/publications/Physical-climate-risks-facing-airports-briefing-paper-September-2020.pdf

Mirza MMQ (2003) Climate change and extreme weather events: can developing countries adapt? Clim Pol 3(3):233–248. https://doi.org/10.3763/cpol.2003.0330

Tol RS (2018) The economic impacts of climate change. Rev Environ Econ Policy 12(1):4–25. https://doi.org/10.1093/reep/rex027

Phiri D, Morgenroth J (2017) Developments in Landsat land cover classification methods: a review. Remote Sens 9(9):967. https://doi.org/10.3390/rs9090967

Viana CM, Girão I, Rocha J (2019) Long-term satellite image time-series for land use/land cover change detection using refined open source data in a rural region. Remote Sens 11(9):1104. https://doi.org/10.3390/rs11091104

Meyer WB, Meyer WB, BL Turner I (1994) Changes in land use and land cover: a global perspective, vol 4. Cambridge University Press, Cambridge

Abd El-Kawy O, Rød J, Ismail H, Suliman A (2011) Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl Geogr 31(2):483–494. https://doi.org/10.1016/j.apgeog.2010.10.012

Alphan H (2003) Land-use change and urbanization of Adana, Turkey. Land Degrad Dev 14(6):575–586. https://doi.org/10.1002/ldr.581

Spruce J, Bolten J, Mohammed IN, Srinivasan R, Lakshmi V (2020) Mapping land use land cover change in the lower Mekong Basin from 1997 to 2010. Front Environ Sci 8:21. https://doi.org/10.3389/fenvs.2020.00021

Fu P, Weng Q (2016) A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens Environ 175:205–214. https://doi.org/10.1016/j.rse.2015.12.040

Pauleit S, Ennos R, Golding Y (2005) Modeling the environmental impacts of urban land use and land cover change—a study in Merseyside, UK. Landsc Urban Plan 71(2–4):295–310. https://doi.org/10.1016/S0169-2046(04)00083-0

Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109(40):16083–16088. https://doi.org/10.1073/pnas.1211658109

d’Amour CB, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb K-H et al (2017) Future urban land expansion and implications for global croplands. Proc Natl Acad Sci 114(34):8939–8944. https://doi.org/10.1073/pnas.1606036114

Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1(1):89–95. https://doi.org/10.1016/j.cosust.2009.07.012

Silva R, Martínez ML, Hesp PA, Catalan P, Osorio AF, Martell R, Fossati M, Miot da Silva G, Mariño-Tapia I, Pereira P, Cienguegos R, Klein A, Govaere G (2014) Present and future challenges of coastal Erosion in Latin America. J Coast Res 71:1–16. https://doi.org/10.2112/si71-001.1

Huq S, Kovats S, Reid H, Satterthwaite D (2007) Reducing risks to cities from disasters and climate change. SAGE Publications Sage UK, London

Benediktsson JA, Pesaresi M, Amason K (2003) Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans Geosci Remote Sens 41(9):1940–1949. https://doi.org/10.1109/TGRS.2003.814625

Gamba, P., Dell’Acqua, F., Stasolla, M., Trianni, G., Lisini, G., & Yang, X. (2011). Limits and challenges of optical high-resolution satellite remote sensing for urban applications. Urban remote sensing: monitoring, synthesis and modeling in the urban environment, 36–47

Cai G, Ren H, Yang L, Zhang N, Du M, Wu C (2019) Detailed urban land use land cover classification at the metropolitan scale using a three-layer classification scheme. Sensors 19(14):3120. https://doi.org/10.3390/s19143120

Blaschke T, Hay GJ, Kelly M, Lang S, Hofmann P, Addink E et al (2014) Geographic object-based image analysis–towards a new paradigm. ISPRS J Photogramm Remote Sens 87(100):180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014

Chen G, Weng Q, Hay GJ, He Y (2018) Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GISci Remote Sens 55(2):159–182. https://doi.org/10.1080/15481603.2018.1426092

Myint SW, Gober P, Brazel A, Grossman-Clarke S, Weng Q (2011) Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ 115(5):1145–1161. https://doi.org/10.1016/j.rse.2010.12.017

Huang B, Zhao B, Song Y (2018) Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ 214:73–86. https://doi.org/10.1016/j.rse.2018.04.050

Voltersen M, Berger C, Hese S, Schmullius C (2014) Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens Environ 154:192–201. https://doi.org/10.1016/j.rse.2014.08.024

Alshehhi R, Marpu PR, Woon WL, Dalla Mura M (2017) Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J Photogramm Remote Sens 130:139–149. https://doi.org/10.1016/j.isprsjprs.2017.05.002

Flanagin AJ, Metzger MJ (2008) The credibility of volunteered geographic information. GeoJournal 72(3–4):137–148. https://doi.org/10.1007/s10708-008-9188-y

Johnson BA, Iizuka K (2016) Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: case study of the Laguna de bay area of the Philippines. Appl Geogr 67:140–149. https://doi.org/10.1016/j.apgeog.2015.12.006

Grippa T, Georganos S, Zarougui S, Bognounou P, Diboulo E, Forget Y, Lennert M, Vanhuysse S, Mboga N, Wolff E (2018) Mapping urban land use at street block level using openstreetmap, remote sensing data, and spatial metrics. ISPRS Int J Geo Inf 7(7):246. https://doi.org/10.3390/ijgi7070246

Brovelli MA, Zamboni G (2018) A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS Int J Geo Inf 7(8):289. https://doi.org/10.3390/ijgi7080289

Helbich M, Amelunxen C, Neis P, Zipf A (2012) Comparative spatial analysis of positional accuracy of OpenStreetMap and proprietary geodata. Proc GI_Forum 4:24

Vitousek S, Barnard PL, Fletcher CH, Frazer N, Erikson L, Storlazzi CD (2017) Doubling of coastal flooding frequency within decades due to sea-level rise. Sci Rep 7(1):1–9

Fewtrell TJ, Duncan A, Sampson CC, Neal JC, Bates PD (2011) Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Phys Chem Earth Parts A/B/C 36(7–8):281–291. https://doi.org/10.1016/j.pce.2010.12.011

Webster TL, Forbes DL, MacKinnon E, Roberts D (2006) Flood-risk mapping for storm-surge events and sea-level rise using lidar for Southeast New Brunswick. Can J Remote Sens 32(2):194–211. https://doi.org/10.5589/m06-016

Coveney S, Fotheringham AS (2011) The impact of DEM data source on prediction of flooding and erosion risk due to sea-level rise. Int J Geogr Inf Sci 25(7):1191–1211. https://doi.org/10.1080/13658816.2010.545064

Van de Sande B, Lansen J, Hoyng C (2012) Sensitivity of coastal flood risk assessments to digital elevation models. Water 4(3):568–579. https://doi.org/10.3390/w4030568

Cooper HM, Chen Q, Fletcher CH, Barbee MM (2013) Assessing vulnerability due to sea-level rise in Maui, Hawai ‘i using LiDAR remote sensing and GIS. Clim Chang 116(3–4):547–563. https://doi.org/10.1007/s10584-012-0510-9

Szlafsztein C, Sterr H (2007) A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J Coast Conserv 11(1):53–66. https://doi.org/10.1007/s11852-007-0003-6

Tate C, Frazier T (2013) A GIS methodology to assess exposure of coastal infrastructure to storm surge & sea-level rise: a case study of Sarasota County, Florida. J Geogr Nat Disasters 1:2167–0587

Bhaskaran PK, Nayak S, Bonthu SR, Murty PN, Sen D (2013) Performance and validation of a coupled parallel ADCIRC–SWAN model for THANE cyclone in the bay of Bengal. Environ Fluid Mech 13(6):601–623. https://doi.org/10.1007/s10652-013-9284-5

Dietrich J, Dawson C, Proft J, Howard M, Wells G, Fleming J et al (2013) Real-time forecasting and visualization of hurricane waves and storm surge using SWAN+ ADCIRC and FigureGen. In: Computational challenges in the geosciences. Springer, New York, pp 49–70

Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS One 10(3):e0118571. https://doi.org/10.1371/journal.pone.0118571

Becker A, Wilson A, Bannon R, McCann J, Robadue D, Kennedy S (2010) Rhode Island Ports & Commercial Harbors A GIS-based Inventory of Current Uses and Infrastructure. Rhode Island Statewide Planning Program, Providence, RI. https://www.rigis.org/datasets/ports-and-commercial-harbors

Lewsey C, Cid G, Kruse E (2004) Assessing climate change impacts on coastal infrastructure in the Eastern Caribbean. Mar Policy 28(5):393–409. https://doi.org/10.1016/j.marpol.2003.10.016

Inter-American Development Bank. (2014). Climate change and IDB: building resilience and reducing emissions; regional study: LAC small island developing states

Monioudi IΝ, Asariotis R, Becker A, Bhat C, Dowding-Gooden D, Esteban M et al (2018) Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): the case of Jamaica and Saint Lucia. Reg Environ Chang 18(8):2211–2225. https://doi.org/10.1007/s10113-018-1360-4

DATASET NGA (National Geospatial-Intelligence Agency): World Port Index. (2019). World port index [Shapefile]. Retrieved from: https://msi.nga.mil/Publications/WPI, Accessed 20 May 2020

DATASET World Port Source: Countries with ports in the Caribbean. (2020). Countries with ports in the Caribbean [Shapefile]. Retrieved from: http://www.worldportsource.com/ports/region.12.php, Accessed 15 May 2020

DATASET OpenFlights: OpenFlights Airport Database. (2017). Open flights airport database [Flat File]. Retrieved from: https://openflights.org/data.html, Accessed 20 May 2020

DATASET World Airport Database. (2020). World airport database [flat file]. Retrieved from: http://www.world-airport-database.com/, Accessed 20 May 2020

UNCTAD (United Nations Conference on Trade and Development). (2020). Climate Change Impacts and Adaptation for Coastal Transport Infrastructure: A Compilation of Policies and Practices (978–92–1-112970-0). Retrieved from, DOI: https://doi.org/10.18356/224bcf95-en

USDOT (United States Department of Transportation). (2005). Runway length requirements for airport design. Retrieved from https://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_150_5325-4B.pdf

Team, F. N. (2018). The Caribbean's wastewater problem. Retrieved from https://www.fluencecorp.com/the-caribbeans-wastewater-problem/

Dronkers, J., Gilbert, T., Butler, L., Carey, J., Campbell, J., James, E.,... von Dadelszen, J. (1990). Strategies for adaption to sea level rise. Retrieved from Geneva: http://papers.risingsea.net/federal_reports/IPCC-1990-adaption-to-sea-level-rise.pdf

Hanson SE, Nicholls RJ (2020) Demand for ports to 2050: climate policy, growing trade and the impacts of sea-level rise. Earth’s Future 8(8):e2020EF001543. https://doi.org/10.1029/2020ef001543

Bove G, Becker A, Sweeney B, Vousdoukas M, Kulp S (2020) A method for regional estimation of climate change exposure of coastal infrastructure: case of USVI and the influence of digital elevation models on assessments. Sci Total Environ 710:136162. https://doi.org/10.1016/j.scitotenv.2019.136162