Toward fluorescence nanoscopy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abbe, E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikroskop. Anat. 9, 413–420 (1873).
Sheppard, C.J.R. & Kompfner, R. Resonant scanning optical microscope. Appl. Opt. 17, 2879–2882 (1978).
Wilson, T. & Sheppard, C.J.R. Theory and Practice of Scanning Optical Microscopy (Academic Press, New York, 1984).
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
Basché, T., Moerner, W.E., Orrit, M. & Wild, U.P. Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, Weinheim, New York, Basel, Tokyo, 1997).
Ha, T., Enderle, T., Chemla, D.S. & Weiss, S. Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules. IEEE J. Select. Top. Quantum Electron. 2, 1115–1128 (1996).
Bornfleth, H., Sätzler, K., Eils, R. & Cremer, C. High-precision distance measurements and volume-conserving segmentation of objects near and below the resolution limit in three-dimensional confocal fluorescence microscopy. J. Microsc. 189, 118–136 (1998).
Oijen, M.v., Köhler, J., Schmidt, J., Müller, M. & Brakenhoff, G.J. 3-Dimensional super-resolution by spectrally selective imaging. Chem. Phys. Lett. 292, 183–187 (1998).
Lacoste, T.D. et al. Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc. Natl. Acad. Sci. USA 97, 9461–9466 (2000).
Hettich, C. et al. Nanometer resolution and coherent optical dipole coupling of two individual molecules. Science 298, 385–389 (2002).
Born, M. & Wolf, E. Principles of Optics 6th edn. (Pergamon, Oxford, 1993).
Hell, S.W. Double-confocal microscope. European Patent 0491289 (1990).
Hell, S. & Stelzer, E.H.K. Properties of a 4Pi-confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).
Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses. Proc. Soc. Photo-Optical Instrumentation Engineers 2412, 147–156 (1995).
Hell, S.W. & Stelzer, E.H.K. Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt. Commun. 93, 277–282 (1992).
Egner, A., Jakobs, S. & Hell, S.W. Fast 100-nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. USA 99, 3370–3375 (2002).
Gustafsson, M.G.L., Agard, D.A. & Sedat, J.W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).
Toraldo di Francia, G. Supergain antennas and optical resolving power. Nuovo Cimento Suppl. 9, 426–435 (1952).
Lukosz, W. Optical systems with resolving powers exceeding the classical limit. J. Opt. Soc. Am. 56, 1463–1472 (1966).
Xu, C., Zipfel, W., Shear, J.B., Williams, R.M. & Webb, W.W. Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. USA 93, 10763–10768 (1996).
Hänninen, P.E., Lehtelä, L. & Hell, S.W. Two- and multiphoton excitation of conjugate dyes with continuous wave lasers. Opt. Commun. 130, 29–33 (1996).
Schönle, A., Hänninen, P.E. & Hell, S.W. Nonlinear fluorescence through intermolecular energy transfer and resolution increase in fluorescence microscopy. Ann. Phys. (Leipzig) 8, 115–133 (1999).
Schönle, A. & Hell, S.W. Far-field fluorescence microscopy with repetitive excitation. Eur. Phys. J. D 6, 283–290 (1999).
Hell, S.W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy. Opt. Lett. 19, 780–782 (1994).
Hell, S.W. & Kroug, M. Ground-state depletion fluorescence microscopy, a concept for breaking the diffraction resolution limit. Appl. Phys. B 60, 495–497 (1995).
Hell, S.W. in Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering in Topics in Fluorescence Spectroscopy Vol. 5. (ed. Lakowicz, J.R.) 361–422 (Plenum, New York, 1997).
Heintzmann, R., Jovin, T.M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).
Hell, S.W., Jakobs, S. & Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A 77, 859–860 (2003).
Westphal, V., Kastrup, L. & Hell, S.W. Lateral resolution of 28nm (λ/25) in far-field fluorescence microscopy. Appl. Phys. B 77, 377–380 (2003).
Lanni, F. Applications of Fluorescence in the Biomedical Sciences 1st edn. (Liss, New York, 1986).
Bailey, B., Farkas, D.L., Taylor, D.L. & Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366, 44–48 (1993).
Schrader, M. & Hell, S.W. 4Pi-confocal images with axial superresolution. J. Microsc. 183, 189–193 (1996).
Hell, S.W., Schrader, M. & van der Voort, H.T.M. Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range. J. Microsc. 185, 1–5 (1997).
Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. J. Opt. Soc. Am. A 18, 36–48 (2001).
Holmes, T.J. Maximum-likelihood image restoration adapted for non-coherent optical imaging. J. Opt. Soc. Am. A 5, 666–673 (1988).
Carrington, W.A. et al. Superresolution in three-dimensional images of fluorescence in cells with minimal light exposure. Science 268, 1483–1487 (1995).
Holmes, T.J. et al. Light microscopic images reconstructed by maximum likelihood deconvolution in Handbook of Biological Confocal Microscopy (ed. Pawley, J.) 389–400 (Plenum, New York, 1995).
Nagorni, M. & Hell, S.W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998).
Hell, S.W. & Nagorni, M. 4Pi confocal microscopy with alternate interference. Optics Lett. 23, 1567–1569 (1998).
Bahlmann, K., Jakobs, S. & Hell, S.W. 4Pi-confocal microscopy of live cells. Ultramicroscopy 87, 155–164 (2001).
Egner, A., Goroshkov, A., Verrier, S., Söling, H.-D. & Hell, S.W. Golgi apparatus of live mammalian cell at 100 nm resolution. J. Struct. Biol. in the press (2003).
Gustafsson, M.G., Agard, D.A. & Sedat, J.W. 3D widefield microscopy with two objective lenses: experimental verification of improved axial resolution. in Three-Dimensional Microscopy: Image Acquisition and Processing III (eds. Cogswell, C., Kino, G.S. & Wilson, T.) 62–66 (SPIE, New York, 1996).
Gustafsson, M.G.L. Extended resolution fluorescence microscopy. Curr. Opin. Struct. Biol. 9, 627–634 (1999).
Nagorni, M. & Hell, S.W. Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. II. Power and limitation of nonlinear image restoration. J. Opt. Soc. Am. A 18, 49–54 (2001).
Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).
Bertero, M., De Mol, C., Pike, E.R. & Walker, J.G. Resolution in diffraction-limited imaging, a singular value analysis. IV. The case of uncertain localization or non-uniform illumination of the object. Opt. Acta 31, 923–946 (1984).
Barth, M. & Stelzer, E. Boosting the optical transfer function with a spatially resolving detector in a high numerical aperture confocal reflection microscope. Optik 96, 53–58 (1994).
Walker, J.G. et al. Superresolving scanning optical microscopy using holographic optical processing. J. Opt. Soc. Am. A 10, 59–64 (1993).
Young, M.R., Davies, R.E., Pike, E.R., Walker, J.G. & Bertero, M. Superresolution in confocal scanning microscopy: experimental confirmation in the 1D coherent case. Europhys. Lett. 9, 773–778 (1989).
Dyba, M. & Hell, S.W. Focal spots of size λ/23 open up far-field fluorescence microscopy at 33 nm axial resolution. Phys. Rev. Lett. 88, 163901 (2002).
Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution limit broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
Klar, T.A., Engel, E. & Hell, S.W. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613, 066611–066619 (2001).
Dyba, M. & Hell, S.W. Photostability of a fluorescent marker under pulsed excited–state depletion through stimulated emission. Appl. Opt. 42, 5123–5129 (2003).
Westphal, V., Blanca, C.M., Dyba, M., Kastrup, L. & Hell, S.W. Laser-diode–stimulated emission depletion microscopy. Appl. Phys. Lett. 82, 3125–3127 (2003).
Dyba, M., Jakobs, S. & Hell, S.W. Immunofluorescence stimulated emission depletion microscopy. Nat. Biotechnol. 21, 1303–1304 (2003).
Gryczynski, I., Bogdanov, V. & Lakowicz, J.R. Light quenching and depolarization of fluorescence observed with laser pulses. A new experimental opportunity in time-resolved fluorescence spectroscopy. Biophys. Chem. 49, 223–232 (1994).
Lakowicz, J.R. & Gryczynski, I. in Topics in Fluorescence Spectroscopy Vol. 5 (ed. Lakowicz, J.R.) 305–355 (Plenum, New York, 1997).
Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).
Lukyanov, K.A. et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J. Biol. Chem. 275, 25879–25882 (2000).
Stephens, D.J. & Allen, V.J. Light microscopy techniques for live cell imaging. Science 300, 82–91 (2003).
Shen, Y.R. The Principles of Nonlinear Optics Edn. 1 (Wiley, New York, 1984).
Einstein, A. Zur Quantentheorie der Strahlung. Physik. Zeitschr. 18, 121–128 (1917).
Goodman, J.W. Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
Magde, D., Elson, E.L. & Webb, W.W. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).
Eigen, M. & Rigler, R. Sorting single molecules: applications to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91, 5740–5747 (1994).
Elson, E.L. & Rigler, R. (eds.) Fluorescence Correlation Spectroscopy. Theory and Applications (Springer, Berlin, 2001).
Levene, M.J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).
Weiss, S. Shattering the diffraction limit of light: a revolution in fluorescence microscopy? Proc. Nat. Acad. Sc. USA 97, 8747–8749 (2000).