Hướng tới một hệ thống cảnh báo sớm để phòng ngừa sốt xuất huyết: mô hình ảnh hưởng của khí hậu đến sự lây truyền sốt xuất huyết

Climatic Change - Tập 98 - Trang 581-592 - 2009
Nicolas Degallier1, Charly Favier2, Christophe Menkes1, Matthieu Lengaigne1, Walter M. Ramalho3, Régilo Souza3, Jacques Servain1,4, Jean-Philippe Boulanger1
1LOCEAN-IPSL, Institut de Recherche pour le Développement (IRD), Paris cedex 05, France
2Institut des Sciences de l’Evolution (UMR CNRS 5554), Université Montpellier II-pl. E. Bataillon, Montpellier cedex 05, France
3SVS-MS, Esplanada dos Ministérios, Bloco G, Brasília, Brazil
4Fundação Cearense de Meteorologia e Recursos Hídricos (FUNCEME), Fortaleza, Brazil

Tóm tắt

Sốt xuất huyết là căn bệnh do virus truyền qua muỗi phổ biến nhất ở người tại các vùng nhiệt đới. Hiện tại, chưa có vaccine hiệu quả nào có sẵn, do đó cách duy nhất để ngăn chặn dịch bệnh là kiểm soát quần thể muỗi. Quần thể muỗi bị ảnh hưởng bởi hành vi của con người và điều kiện khí hậu, do đó cần có nỗ lực liên tục và tốn kém rất nhiều. Những ví dụ về sự thành công trong phòng ngừa là hiếm hoi do sự tái xâm nhập liên tục của virus hoặc véc-tơ từ bên ngoài, hoặc do sự kháng thuốc ngày càng tăng của quần thể muỗi đối với các loại thuốc trừ sâu. Biến đổi khí hậu và sự nóng lên toàn cầu cũng là những yếu tố có thể tạo điều kiện cho dịch sốt xuất huyết bùng phát. Trong một nghiên cứu thí điểm trong dự án Claris EC, một mô hình cho sự lây truyền sốt xuất huyết đã được xây dựng, nhằm phục vụ như một công cụ để ước tính nguy cơ lây truyền dịch bệnh và cuối cùng là dự đoán nguy cơ trong các kịch bản biến đổi khí hậu. Mục tiêu cuối cùng sẽ là sử dụng mô hình như một hệ thống cảnh báo sớm với các dự báo khí tượng làm đầu vào, từ đó cho phép đưa ra quyết định và phòng ngừa tốt hơn.

Từ khóa

#sốt xuất huyết #muỗi #mô hình lây truyền #phòng ngừa dịch bệnh #biến đổi khí hậu

Tài liệu tham khảo

Almeida MCdM, Caiaffa WT, Assunção RM, Proietti FA (2007) Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. J Urban Health: Bull N Y Acad Med 84:334–345 Anderson RM (1981) Population ecology of infectious disease agents. In: May RM (ed) Theoretical ecology: principles and applications. Blackwell, Oxford, pp 318–355 Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Glob Environ Change 14:3–20 Barcellos C, Pustai AK, Weber MA, Brito MRV (2005) Identificação de locais com potencial de transmissão de dengue em Porto Alegre através de técnicas de geoprocessamento. Rev Soc Bras Med Trop 38:246–250 Bartley LM, Donnelly CA, Garnett GP (2002) The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 96:387–397 Beckett CG, Kosasih H, Faisal I, Nurhayati, Tan R, Widjaja S, Listiyaningsih E, Ma’roeff C, Wuryadi S, Bangs MJ, Samsi TK, Yumono D, Hayes CG, Porter KR (2005) Early detection of dengue infections using cluster sampling around index cases. Am J Trop Med Hyg 72:777–782 Burnett HS, Matthews M Jr (1997) Sick argument: global warming and the spread of tropical diseases. National Center for Policy Analysis. Brief Analysis 241:1–2 Carbajo E, Schweigmann N, Curto SI, Garín Ad, Bejarán R (2001) Dengue transmission risk maps of Argentina. Trop Med Int Health 6:170–183 Cazelles B, Chavez M, McMichael AJ, Hales S (2005) Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLOS Med 2:313–318 Christophers SR (1960) Aëdes aegypti (L.)—the yellow fever mosquito—its life history, bionomics and structure, vol. Cambridge University Press, Cambridge Clark DV, Mammen MP Jr, Nisalak A, Puthimethee V, Endy TP (2005) Economic impact of dengue fever/dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg 72:786–791 Corrêa PRL, França E, Bogutchi TF (2005) Infestação pelo Aedes aegypti e ocorrência da dengue em Belo Horizonte, Minas Gerais. Rev Saúde Pública 39:33–40 Cruz-Pacheco G, Esteva L, Montaño-Hirose JA, Vargas C (2005) Modelling the dynamics of West Nile virus. Bull Math Biol 67:1157–1172 Degallier N, Favier C, Boulanger J-P, Menkes CE, Oliveira C, Lima JRC, Mondet B (2004) Hidden dynamics of dengue epidemics in Brazil. In: 2004 ESA annual meeting and exhibition. Our heritage: our future. Salt Palace Convention Center, Entomological Society of America, Salt Lake City, Utah, USA Degallier N, Favier C, Boulanger J-P, Menkes CE, Oliveira C (2005) Une nouvelle méthode d’estimation du taux de reproduction des maladies (Ro): application à l’étude des épidémies de Dengue dans le District Fédéral, Brésil. Environ Risques Santé 4:131–135 Degallier N, Favier C, Menkes CE, Boulanger J-P, Servain J, ramalho WM, Lengaigne M (2006) Dengue transmission modeling and risk assessment under climatic changes ICEID. In: International conference on emerging infectious diseases, Atlanta Marriott Marquis, American Society for Microbiology, Atlanta, Georgia, USA, 19–22 March, p 112 Depradine CA, Lovell EH (2004) Climatological variables and the incidence of dengue fever in Barbados. Int J Environ Health Res 14:429–441 Dietz K (1974) Transmission and control of arbovirus diseases. In: Ludvig D, Cooke KL (eds) Proceedings of SIMS conference on epidemiology, Alta, Utah, 8–12 July, pp 104–121 Duvallet G (2006) Parasites, vecteurs de pathogènes et changements climatiques. Hydroécologie Appliqueé 15:87–96 Eisenberg JNS, Brookhart MA, Rice G, Brown M, Colford JM Jr (2002) Disease transmission models for public health decision making: analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Perspect 110:783–790 Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE, Martens WJM, Mosley-Thompson E, Susskind J (1998) Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc 79:409–417 Favier C, Degallier N, Dubois MA, Boulanger J-P, Menkes CE, Torres L (2005a) Dengue epidemic modeling: stakes and pitfalls. Asia Pacific Biotech News 9:1191–1194 Favier C, Schmit D, Müller-Graf C, Cazelles B, Degallier N, Mondet B, Dubois MA (2005b) Influence of spatial heterogeneity on an emerging infectious disease: the case of dengue epidemics. Proc R Soc B 272:1171–1177 Favier C, Degallier N, Vilarinhos PdTR, Carvalho MdSLd, Yoshizawa MAC, Knox MB (2006) Effects of climate and different management strategies on Aedes aegypti breeding sites: a longitudinal survey in Brasilia (DF, Brazil). Trop Med Int Health 11:1104–1118 Focks DA (1988) Quantitative models of arbovirus infection. In: Monath TP (ed) The arboviruses: epidemiology and ecology, vol I. CRC, Boca Raton, pp 311–318 Focks DA, Alexander N, Villegas E, Romero-Vivas CME, Midega JT, Bisset J, Morrison AC, Barrera R, Barbazan P, Nam VS, Arredondo-Jiménez JI (2006) Multicountry study of Aedes aegypti pupal productivity survey methodology: findings and recommendations, vol TDR/IRM/Den/06.1. WHO/TDR, Genève Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull WHO 78:1136–1147 Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103 Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA (2001) Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109(Supplement 2):223–233 Guzmán MG, Kouri G (2002) Dengue: an update. Lancet Infect Dis 2:33–42 Hales S, Weinstein P, Souares Y, Woodward A (1999) El Nino and the dynamics of vector borne disease transmission. Environ Health Perspect 107:99–102 Hales S, Wet Nd, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834 Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks GD, Myers MF, Snow RW (2002) Climate change and the resurgence of malaria in the East African highlands. Nature 415:905–909 Heukelbach J, Oliveira FASd, Kerr-Pontes LRS, Feldmeier H (2001) Risk factors associated with an outbreak of dengue fever in a favela in Fortaleza, north-east Brazil. Trop Med Int Health 6:635–642 Hopp MJ, Foley JA (2001) Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change 48:441–463 Hopp MJ, Foley JA (2003) Worldwide fluctuations in dengue fever cases related to climate variability. Clim Res 25:85–94 Kay B, Nam VS (2005) New strategy against Aedes aegypti in Vietnam. Lancet 365:613–617 Kolivras KN (2006) Mosquito habitat and dengue risk potential in Hawaii: a conceptual framework and GIS application. Prof Geogr 58:139–1554 Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A (2003) El Niño and health. Lancet 362:1481–1489 Kuhn K, Campbell-Lendrum D, Haines A, Cox J (2005) Using climate to predict infectious disease epidemics, vol. World Health Organization, Genève Lieshout Mv, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Change 14:87–99 Lifson AR (1996) Mosquitoes, models, and dengue. Lancet 347:1201 Maelzer D, Hales S, Weinstein P, Zalucki M, Woodward A (1999) El Niño and arboviral disease prediction. Environ Health Perspect 107:1–3 Mairuhu ATA, Wagenaar J, Brandjes DMP, Gorp ECMv (2004) Dengue: an arthropod-borne disease of global importance. Eur J Clin Microbiol Infect Dis 23:425–433 Martens WJM, Jetten TH, Focks DA (1997) Sensitivity of malaria, schistosomiasis and dengue to global warming. Clim Change 35:145–156 Marzochi KBF (1994) Dengue in Brazil—situation, transmission and control—a proposal for ecological control. Mem Inst Oswaldo Cruz 89:235–245 McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869 Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN (2005) A forecast quality assessment of an end-to-end probabilistic multi-model seasonal forecast system using a malaria model. Tellus 57A:464–475 Nakhapakorn K, Tripathi NK (2005) An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr 4:13 Nishiura H, Inaba H (2007) Discussion: emergence of the concept of the basic reproduction number from mathematical demography. J Theor Biol 244:357–364 Nogueira LA, Gushi LT, Miranda JE, Madeira NG, Ribolla PEM (2005) Application of an alternative Aedes species (Diptera: Culicidae) surveillance method in Botucatu city, São Paulo, Brazil. Am J Trop Med Hyg 73:309–311 Norris DE (2004) Mosquito-borne diseases as a consequence of land use change. EcoHealth 1:19–24 Oreskes N (2004) The scientific consensus on climate change. Science 306:1686 Otero M, Solari HG, Schweigmann N (2005) A stochastic population dynamics model for Aedes aegypti formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974 Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317 Reiter P (2001) Climate change and mosquito-borne disease. Environ Health Perspect 109:141–161 Rogers DJ, Wilson AJ, Hay SI, Graham AJ (2006) The global distribution of yellow fever and dengue. Adv Parasitol 62:181–220 Shope RE (1992) Impacts of global climate change on human health: spread of infectious disease. In: Majumdar SK, Kalkstein LS, Yarnal B, Miller EW, Rosenfeld LM (eds) Global climate change: implications, challenges and mitigation measures. The Pennsylvania Academy of Science, Easton, pp 363–370 Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17:136–173 Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579 Unnasch RS, Sprenger T, Katholi CR, Cupp EW, Hill GE, Unnasch TR (2005) A dynamic transmission model of eastern equine encephalitis virus. Ecol Model 192:425–440