Toward a liquid-state theory with accurate critical-region behavior

International Journal of Thermophysics - Tập 6 - Trang 561-571 - 1985
J. S. Høye1, G. Stell2
1Institutt for Teoretisk Fysikk, Universitetet i Trondheim, Trondheim-NTH, Norway
2Departments of Mechanical Engineering and Chemistry, State University of New York, Stony Brook, USA

Tóm tắt

A scaling-theory approach that yields the scaled thermodynamics in the critical region as the solution of an ordinary differential equation is given, along with a power-series “isocline” representation of the solution yielding a polynomial fit of a high accuracy. A means of extending the approach to the whole liquid-state region through a self-consistent integral equation for the radial distribution function is discussed. An alternative integral-equation approach and a simple application of scaling-theory results that has already been found to be globally useful are also noted.

Tài liệu tham khảo

B. Widom, J. Chem. Phys. 43:3898 (1965). M. S. Green, M. Vicentini-Missoni, and J. M. H. Levelt Sengers, Phys. Rev. Lett. 18:1113 (1967). See, e.g., R. B. Griffiths, Phys. Rev. 158:176 (1967); M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green, Phys. Rev. Lett. 22:389 (1969). A. A. Migdal, Zh. Eksp. Theor. Fiz. 62:1559 (1972); JETP 35:816 (1972). P. Schofield, Phys. Rev. Lett. 22:606 (1969). J. S. Høye and G. Stell, Mol. Phys. 52:1071 (1984). Unpublished (1965) work done in preparing G. Stell, J. L. Lebowitz, S. Baer, and W. Theumann, J. Math. Phys. 7:1532 (1966). G. Stell, Phys. Rev. B 1:2265 (1970). R. Hocken and G. Stell, Phys. Rev. A 8:887 (1973), Section II. S. Torquato and G. Stell, J. Chem. Phys. 85:3029 (1981); I&EC Fund. 21:202 (1982). F. J. Wegner, Phys. Rev. B 5:4529 (1972). S. Torquato and P. Smith, J. Heat Transfer 106:253 (1984). A. Sivaraman, J. Magee, and Riki Kobayashi, Fluid Phase Eq. 16:1 (1984).