Toward Smart and Ultra‐efficient Solid‐State Lighting

Advanced Optical Materials - Tập 2 Số 9 - Trang 809-836 - 2014
Jeffrey Y. Tsao1, Mary H. Crawford1, Michael E. Coltrin1, Arthur Fischer1, Daniel Koleske1, Ganapathi Subramania1, George T. Wang1, Jonathan J. Wierer1, R. F. Karlicek2
1Energy Frontier Research Center for Solid‐State Lighting Science Sandia National Laboratories Albuquerque NM 87185
2Smart Lighting Engineering Research Center, Department of Electrical Computer and Systems Engineering Rensselaer Polytechnic Institute

Tóm tắt

Solid‐state lighting has made tremendous progress this past decade, with the potential to make much more progress over the coming decade. In this article, the current status of solid‐state lighting relative to its ultimate potential to be “smart” and ultra‐efficient is reviewed. Smart, ultra‐efficient solid‐state lighting would enable both very high “effective” efficiencies and potentially large increases in human performance. To achieve ultra‐efficiency, phosphors must give way to multi‐color semiconductor electroluminescence: some of the technological challenges associated with such electroluminescence at the semiconductor level are reviewed. To achieve smartness, additional characteristics such as control of light flux and spectra in time and space will be important: some of the technological challenges associated with achieving these characteristics at the lamp level are also reviewed. It is important to emphasise that smart and ultra‐efficient are not either/or, and few compromises need to be made between them. The ultimate route to ultra‐efficiency brings with it the potential for smartness, the ultimate route to smartness brings with it the potential for ultra‐efficiency, and the long‐term ultimate route to both might well be color‐mixed RYGB lasers.

Từ khóa


Tài liệu tham khảo

Solid‐state lighting can in principal be based on inorganic or organic semiconductors. Although we will mention organic semiconductors in the context of display technology in this article we emphasize the inorganic semiconductors which for solid‐state lighting are currently the most advanced.

10.1002/pssa.201026349

10.1063/1.1445547

10.1016/0921-4526(93)90277-D

10.1007/s10043-995-0167-y

10.1017/CBO9780511790546

10.1038/nphoton.2007.34

10.1063/1.1753706

10.1063/1.111832

10.1063/1.96549

10.1143/JJAP.28.L2112

Osram Opto Semiconductors GmbH of Regensburg Germany recently announced research results with a record efficiency of 61% for a red high‐power LED. The 1 mm2chip housed in a laboratory package emits at a dominant wavelength of 609 nm with a luminous efficiency of 201l m/W at an operating current of 40 mA. At a typical operating current of 350 mA its luminous efficacy is still 168 lm/W so even at this high wattage more than half of the electrical energy is converted into light.

10.1088/0022-3727/43/35/354002

Y.Shiimizu K.Sakano Y.Noguchi T.Moriguchi US Patent6614179 2003.

10.1002/opph.201190325

10.1109/JDT.2007.895339

Data for Figurewere taken from “Luxeon Rebel and Luxeon Rebel ES Color Portfolio ” Technical Datasheet DS68 (Philips Lumileds Dec 19 2012) accessed December 2012.

“Luxeon Rebel and Luxeon Rebel ES Color Portfolio ” Technical Datasheet DS68 (Philips Lumileds May 2014) accessed May 2014.

“Osram Opto unveils Brilliant‐Mix LED mixing concept ” LEDs Magazine (May 2011) accessed May 2014.

Note that phosphor cooling can be especially problematic though progress is being made with higher thermal conductivity conformal phosphor coatings so that the phosphor can be cooled reasonably effectively through the LED die.

“Luxeon T High‐Efficacy Illumination Grade LED light source ” Technical Datasheet DS106 (Philips Lumileds March 22 2013); and “Cree XLamp XM‐L2 LEDs ” Product Family Data Sheet CLD‐DS61 Rev 1A (Cree 2012–2013) accessed March 2013.

Conner M., 2011, Electron. Des. News, 56, 14

10.1002/adma.201000525

10.1149/2.012302jss

R.Haitz personal communication unpublished.

Within limits of course: too much visual information might distract and even impair cognitive function.

10.1109/JPROC.2009.2031669

10.1109/JSTQE.2009.2013476

10.1109/JDT.2012.2225407

10.1109/JDT.2012.2224638

10.1364/OE.19.00A982

J. Y. Tsao J. J. Wierer L. E. S. Rohwer M. E. Coltrin M. H. Crawford J. A. Simmons P. C. Hung H. Saunders D. S. Sizov R. Bhat C. E. Zah T. Y. Seong J. Han H. Amano H. Morkoc 2013

10.1117/12.614668

10.1002/col.20399

10.1364/OE.20.005356

S.Paolini presented at Taiwan Solid‐State Lighting June 2012.

10.1109/JLT.1984.1073653

10.1126/science.1108712

10.1109/MSPEC.2013.6655838

Basu C., 2013, Adv. Opt. Technol., 2, 313, 10.1515/aot-2013-0031

10.1016/j.aap.2012.12.029

10.1177/1477153509360855

Philips Hue http://meethue.com/ accessed June 2014.

F.Rubinstein S.Kiliccote “Demand Responsive Lighting: A Scoping Study ” Lawrence Berkeley National Laboratory Technical Note LBNL‐62226 (January 2007) http://drrc.lbl.gov/publications/demand‐responsive‐lighting‐scoping accessed March 2013.

B.Witherspoon M.Petrick “Scientific Research and Sky Image Ceilings ” Sky Factory White Paper.http://www.skyfactory.com/files/SkyFactory_White_Paper_032408.pdf accessed March 2013.

“Sky Light Sky Bright – In the Office ” Fraunhofer Press Release http://www.fraunhofer.de/en/press/research‐news/2012/january/sky‐light‐sky‐bright.html accessed March 2013.

Such panels are now commercially available see:http://www.neonny.com/news/html/?464.html accessed March 2013

10.1126/science.1067262

10.1289/ehp.10200

Rosenthal N. E., 1989, Seasonal Affective Disorders and Phototherapy, 273

10.1152/ajpendo.00597.2010

10.1006/jevp.2000.0198

T.Goven T.Laike P.Raynham E.Sansal “Influence of Ambient Light on the Performance Mood Endocrine Systems and Other Factors of School Children ” presented at CIE 27th Session Sun City South Africa 112 (2011).

10.1176/ajp.149.8.1028

10.1097/01.psy.0000149258.42508.70

“New Philips lighting solution increases duration of sleep for hospital patients ” Philips Study at:http://www.newscenter.philips.com/main/standard/news/press/2011/20111122‐healwell.wpd accessed March 2013

L.Edwards P.Torcelli “A Literature Review of the Effects of Natural Light on Building Occupants ”National Renewable Energy Laboratory Technical Report (NREL TP‐550–30769)July 2002.

Morrow R. C., 2008, Horticulture Sci., 43, 1947

10.1093/jxb/erq005

10.2174/1874104500802010049

The Visible Light Communications Consortium was established in Japan in 2003. See:http://www.vlcc.net/modules/xpage3/ accessed June 2014.

Vucic J., 2010, J. Lightwave Technol., 28, 3512, 10.1109/JLT.2010.2089602

10.1109/MCOM.2010.5673074

10.1364/OPN.25.3.000034

10.1109/98.824566

See the IEEE802.15.7 draft standard for visible light communications.

Rahaim M. B., 2011, Proc. 2nd IEEE Globecom 2011 Workshop on Optical Wireless Communications (OWC 2011), 818

10.1109/SURV.2011.101310.00005

10.1364/AOP.3.000128

10.1145/200972.200985

10.3390/s91210080

Brida F., 2007, IFIP International Federation for information Processing: Personal Wireless Communications, 423

10.1177/1477153508099889

Note that ultra‐efficiency also translates to a lower capital cost of light (the cost of the lamp) by simplifying heat management. Lower cost in turn translates to decreased energy consumption through increased market penetration.

10.1002/lpor.200710019

Navigant Consulting “US Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate” (US Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program September 2002).

10.1088/0022-3727/43/35/354001

This plot has been adapted from:J. Y.Tsao P.Waide “The World's Appetite for Light: A Simple Empirical Expression Spanning Three Centuries and Six Continents LEUKOS 6 259–281 (2010). The only changes are: it plots per capita light consumption and gross domestic product rather than total light consumption and gross domestic product; and a data point for the US in 2010 has been added from Navigant “2010 US Lighting Market Characterization” (US Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 2012).

10.1016/j.enpol.2012.06.050

Phillips J. M., 2006, Basic Research Needs for Solid‐State Lighting: Report of the Basic Energy Sciences Workshop on Solid‐State Lighting

10.1088/0022-3727/43/35/354002

10.1002/lpor.201300048

10.1002/lpor.201200025

10.1109/JDT.2013.2250252

10.1063/1.4739409

10.1002/pssa.200778747

10.1063/1.2839305

10.1063/1.3133359

10.1103/PhysRevLett.110.177406

10.1063/1.110575

Krames M. R., Light‐Emitting Diodes: Research, Manufacturing, and Applications IV, 2–12

10.1063/1.2775334

10.1109/JDT.2013.2248342

10.1063/1.1652232

10.1063/1.2807272

10.1002/pssc.200880893

10.1063/1.2807272

10.1063/1.3371812

10.1063/1.4769374

10.1063/1.1493220

10.1109/JDT.2012.2227682

Michalzik R., 2002, Vertical‐Cavity Surface‐Emitting Laser Devices

For simplicity this equation omits theAcontribution from SRH defect recombination which would normally be overwhelmed by theBandCterms. However for low threshold current density devices the A contribution might be significant and would need to be considered.

Jasim F. Z., 2009, Optoelectron. Adv. Mater., Rapid Commun., 3, 1136

10.1049/el:20092873

10.1073/pnas.2634328100

10.1103/RevModPhys.82.1489

10.1002/lpor.200710019

10.1063/1.1489481

However note that the In content can be reduced somewhat (to 20%) if InGaN alloys are grown strained on c‐plane GaN: the quantum‐confined Stark effect red‐shifts the emission wavelength from ∼470 nm (for unstrained InGaN) to 530 nm (for fully strained InGaN).

10.1063/1.117683

10.1063/1.2431573

Stringfellow G. B., 1998, Organometallic Vapor‐Phase Epitaxy

10.1016/j.jcrysgro.2003.11.074

10.1116/1.588793

10.1016/j.jcrysgro.2010.03.008

10.1007/s11664-006-0104-2

10.1063/1.4719100

10.1143/APEX.3.102101

10.1143/APEX.3.122102

10.1143/APEX.5.062103

10.1109/JDT.2012.2227682

10.1063/1.3698113

10.1143/APEX.4.082104

10.1002/pssc.200304090

10.1063/1.126939

10.1016/j.jcrysgro.2008.08.038

10.1063/1.120164

10.1063/1.3152012

10.1109/JSTQE.2009.2017208

10.1143/JJAP.46.L948

10.1016/j.jcrysgro.2008.08.038

10.1143/APEX.2.061004

10.1063/1.3668117

10.1063/1.2206883

Kawai Y., 2008, Proc. SPIE, 6889, 88904

10.1143/APEX.3.061001

10.1063/1.2433758

10.1063/1.3624462

10.1016/j.jcrysgro.2008.07.087

10.1063/1.2206883

10.1063/1.2433758

10.1063/1.1903106

10.1117/12.695168

10.1038/nmat2037

10.1063/1.1854204

10.1116/1.2216715

10.1021/nl3022434

10.1109/LPT.2011.2178091

10.1063/1.3443734

10.7567/APEX.6.012101

10.1002/adma.201100806

10.1063/1.3513345

10.1116/1.4865914

10.1021/nl104536x

10.1117/12.695168

10.1021/nl049615a

10.1117/12.909377

10.1103/PhysRevB.53.15893

10.1109/3.236147

“Osram red LED prototype breaks 200 lm/W efficiency barrier” Semiconductor Today Oct. 11 2011 http://www.semiconductor‐today.com/news_items/2011/OCT/OSRAM_111011.html accessed: May 2014.

10.1103/PhysRevB.60.11564

10.1038/nmat1198

10.1109/3.880653

10.1063/1.103883

10.1002/lpor.201300048

10.1088/0034-4885/75/12/126501

10.1103/PhysRevLett.58.2059

10.1038/nphoton.2009.21

David A., 2006, Appl. Phys. Lett., 88, 073510‐1;

10.1063/1.3459970

10.1515/9781400828241

10.1103/PhysRevE.62.4251

10.1063/1.2147713

10.1103/PhysRev.69.37

10.1021/nl201867v

T.Mukai M.Yamada S.Nakamura “InGaN‐based uv/blue/green/amber/red LEDs” Proc. SPIE 3621 Light‐Emitting Diodes: Research Manufacturing and Applications III 2‐13 (April 14 1999); DOI:10.1117/12.3444641999.

10.1063/1.4793300

10.1103/PhysRev.150.680

10.1063/1.2374846

10.1116/1.2236121

10.1063/1.1311957

10.1103/PhysRevB.62.4493

10.1103/PhysRevB.56.10233

10.1063/1.126005

10.1063/1.3453447

10.1116/1.591480

10.1063/1.3517069

A. P.Van de Ven G. H.Negley US Patent8 029 155 October 4 2011.

10.1117/12.931508

10.1016/j.cap.2010.11.006

van Gorkom R. P., 2007, Proc. SPIE, 6670, 66700E‐10

Chow T. P., 2012, GaN and ZnO based Materials and Devices

10.1063/1.4807125