Toughening mechanisms in cost-effective carbon-epoxy laminates with thermoplastic veils: Mode-I and in-situ SEM fracture characterisation

Oğuzcan İnal1, Mehmet Çağatay Akbolat2, Constantinos Soutis1,3, Kali Babu Katnam2,3
1Department of Materials, The University of Manchester, UK
2Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, UK
3Aerospace Research Institute, The University of Manchester, UK

Tài liệu tham khảo

Soutis, 1993, Compressive failure of notched carbon fibre composites, Proc. R. Soc. Lond. Math. Phys. Sci., 440, 241 Katnam, 2019, Towards balancing in-plane mechanical properties and impact damage tolerance of composite laminates using quasi-UD woven fabrics with hybrid warp yarns, Compos. Struct., 225, 111083, 10.1016/j.compstruct.2019.111083 Katnam, 2013, Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities, Prog. Aero. Sci., 61, 26, 10.1016/j.paerosci.2013.03.003 Cantwell, 1991, The impact resistance of composite materials—a review, Composites, 22, 347, 10.1016/0010-4361(91)90549-V Richardson, 1996, Review of low-velocity impact properties of composite materials, Compos. A Appl. Sci. Manuf., 27, 1123, 10.1016/1359-835X(96)00074-7 İnal, 2018, Bolted joints in quasi-unidirectional glass-fibre NCF composite laminates, Compos. Struct., 183, 536, 10.1016/j.compstruct.2017.05.075 Jumahat, 2012, Compressive behaviour of nanoclay modified aerospace grade epoxy polymer, Plastics Rubber Compos., 41, 225, 10.1179/1743289811Y.0000000028 Hsieh, 2010, The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles, J. Mater. Sci., 45, 1193, 10.1007/s10853-009-4064-9 Domun, 2015, Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status, Nanoscale, 7, 10294, 10.1039/C5NR01354B Mittal, 2015, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Chem., 21, 11, 10.1016/j.jiec.2014.03.022 Dikshit, 2017, Multiscale polymer composites: a review of the interlaminar fracture toughness improvement, Fibers, 5, 38, 10.3390/fib5040038 Blackman, 2007, The fracture and fatigue behaviour of nano-modified epoxy polymers, J. Mater. Sci., 42, 7049, 10.1007/s10853-007-1768-6 Pullicino, 2017, The effect of shear mixing speed and time on the mechanical properties of GNP/epoxy composites, Appl. Compos. Mater., 24, 301, 10.1007/s10443-016-9559-3 Poutrel, 2017, Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy, Appl. Compos. Mater., 24, 313, 10.1007/s10443-016-9541-0 Hogg, 2005, Toughening of thermosetting composites with thermoplastic fibres, Mater. Sci. Eng. A, 412, 97, 10.1016/j.msea.2005.08.028 Nash, 2015, Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites—a review, Mater. Des., 85, 582, 10.1016/j.matdes.2015.07.001 Kuwata, 2011, Interlaminar toughness of interleaved CFRP using non-woven veils: Part 1. Mode-I testing, Compos. Appl. Sci. Manuf., 42, 1551, 10.1016/j.compositesa.2011.07.016 Ramirez, 2015, The influence of the nonwoven veil architectures on interlaminar fracture toughness of interleaved composites, Compos. Sci. Technol., 110, 103, 10.1016/j.compscitech.2015.01.016 Nash, 2015, The influence of hydrothermal conditioning on the Mode-I, thermal and flexural properties of Carbon/Benzoxazine composites with a thermoplastic toughening interlayer, Compos. A Appl. Sci. Manuf., 76, 135, 10.1016/j.compositesa.2015.04.023 Fitzmaurice, 2016, PET interleaving veils for improved fracture toughness of glass fibre/low-styrene-emission unsaturated polyester resin composites, J. Appl. Polym. Sci., 133, 10.1002/app.42877 O'Donovan, 2015, Toughening effects of interleaved nylon veils on glass fabric/low-styrene-emission unsaturated polyester resin composites, J. Appl. Polym. Sci., 132, 10.1002/app.41462 Quan, 2020, Interlaminar fracture toughness of aerospace-grade carbon fibre reinforced plastics interleaved with thermoplastic veils, Compos. Appl. Sci. Manuf., 128, 105642, 10.1016/j.compositesa.2019.105642 Beylergil, 2018, Effect of polyamide-6,6 (PA 66) nonwoven veils on the mechanical performance of carbon fiber/epoxy composites, Compos. Struct., 194, 21, 10.1016/j.compstruct.2018.03.097 García-Rodríguez, 2020, Interleaving light veils to minimise the trade-off between mode-I interlaminar fracture toughness and in-plane properties, Compos. A Appl. Sci. Manuf., 128, 105659, 10.1016/j.compositesa.2019.105659 Del Saz-Orozco, 2017, Effect of thermoplastic veils on interlaminar fracture toughness of a glass fiber/vinyl ester composite, Polym. Compos., 38, 2501, 10.1002/pc.23840 Palazzetti, 2017, Electrospun nanofibers as reinforcement for composite laminates materials—a review, Compos. Struct., 182, 711, 10.1016/j.compstruct.2017.09.021 Zucchelli, 2011, Electrospun nanofibers for enhancing structural performance of composite materials, Polym. Adv. Technol., 22, 339, 10.1002/pat.1837 Tzetzis, 2006, Bondline toughening of vacuum infused composite repairs, Compos. A Appl. Sci. Manuf., 37, 1239, 10.1016/j.compositesa.2005.09.008 Quan, 2020, Fracture behaviour of carbon fibre/epoxy composites interleaved by MWCNT-and graphene nanoplatelet-doped thermoplastic veils, Compos. Struct., 235, 111767, 10.1016/j.compstruct.2019.111767 Quan, 2019, Improving the electrical conductivity and fracture toughness of carbon fibre/epoxy composites by interleaving MWCNT-doped thermoplastic veils, Compos. Sci. Technol., 182, 107775, 10.1016/j.compscitech.2019.107775 Chen, 2019, Controlling the crack propagation path of the veil interleaved composite by fusion-bonded dots, Polymers, 11, 1260, 10.3390/polym11081260 Mortell, 2014, In-situ SEM study of transverse cracking and delamination in laminated composite materials, Compos. Sci. Technol., 105, 118, 10.1016/j.compscitech.2014.10.012 Wafai, 2019, An experimental approach that assesses in-situ micro-scale damage mechanisms and fracture toughness in thermoplastic laminates under out-of-plane loading, Compos. Struct., 207, 546, 10.1016/j.compstruct.2018.09.046 O'Dwyer, 2014, In-situ SEM mechanical testing of miniature bonded joints, Int. J. Adhesion Adhes., 50, 57, 10.1016/j.ijadhadh.2013.12.027 Schneider, 2012, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9, 671, 10.1038/nmeth.2089 Mark, 1999 ASTM, 2013 Charalambides, 1989, A test specimen for determining the fracture resistance of bimaterial interfaces, J. Appl. Mech., 56, 77, 10.1115/1.3176069 ASTM, 2015 Sun, 1989, Growth of delamination cracks due to bending in a [905/05/905] laminate, Compos. Sci. Technol., 34, 365, 10.1016/0266-3538(89)90005-5 Wu, 2017, Interlaminar fracture toughness of carbon fibre/RTM6-2 composites toughened with thermoplastic-coated fabric reinforcement, Compos. B Eng., 130, 192, 10.1016/j.compositesb.2017.08.003 Juntti, 1999, Assessment of evaluation methods for the mixed-mode bending test, J. Compos. Technol. Res., 21, 37, 10.1520/CTR10611J Asp, 2001, Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading, J. Compos. Technol. Res., 23, 55, 10.1520/CTR10914J Wang, 2015, Finite element analysis of composite T-joints used in wind turbine blades, Plastics Rubber Compos., 44, 87, 10.1179/1743289814Y.0000000113 Wang, 2018, A finite element and experimental analysis of composite T-joints used in wind turbine blades, Appl. Compos. Mater., 25, 953, 10.1007/s10443-018-9711-3