Tough and flame-retardant poly(lactic acid) composites prepared via reactive blending with biobased ammonium phytate and in situ formed crosslinked polyurethane

Composites Communications - Tập 8 - Trang 52-57 - 2018
De‐Fu Li1, Xi Zhao1, Yun-Wan Jia1, Xiu‐Li Wang1, Yu‐Zhong Wang1
1Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu, 610064, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Drumright, 2000, Polylactic acid technology, Adv. Mater., 12, 1841, 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

Gross, 2002, Biodegradable polymers for the environment, Science, 297, 803, 10.1126/science.297.5582.803

Auras, 2004, An overview of polylactides as packaging materials, Macromol. Biosci., 4, 835, 10.1002/mabi.200400043

Lasprilla, 2012, Poly-lactic acid synthesis for application in biomedical devices - a review, Biotechnol. Adv., 30, 321, 10.1016/j.biotechadv.2011.06.019

Kohler, 2005, Modeling melt spinning of PLA fibers, J. Macromol. Sci. B, 44, 185, 10.1081/MB-200049786

Varsavas, 2018, Effects of glass fiber reinforcement and thermoplastic elastomer blending on the mechanical performance of polylactide, Compos. Commun., 8, 24, 10.1016/j.coco.2018.03.003

Biswas, 2017, Influence of biobased silica/carbon hybrid nanoparticles on thermal and mechanical properties of biodegradable polymer films, Compos. Commun., 4, 43, 10.1016/j.coco.2017.04.005

Liu, 2011, Research progress in toughening modification of poly(lactic acid), J. Polym. Sci. Pol. Phys., 49, 1051, 10.1002/polb.22283

Bourbigot, 2010, Flame retardancy of polylactide: an overview, Polym. Chem., 1, 1413, 10.1039/c0py00106f

Song, 2011, A method for simultaneously improving the flame retardancy and toughness of PLA, Polym. Adv. Technol., 22, 2295, 10.1002/pat.1760

Chow, 2015, Flexible and flame resistant poly(lactic acid)/organomontmorillonite nanocomposites, J. Appl. Polym. Sci., 132, 10.1002/app.41253

Wei, 2011, Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid), Polym. Degrad. Stabil., 96, 1557, 10.1016/j.polymdegradstab.2011.05.018

Liu, 2011, Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems, Polym. Degrad. Stabil., 96, 771, 10.1016/j.polymdegradstab.2011.02.022

Yuan, 2011, Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone, Polym. Degrad. Stabil., 96, 1669, 10.1016/j.polymdegradstab.2011.06.012

Bai, 2014, Towards high-performance poly(l-lactide)/elastomer blends with tunable interfacial adhesion and matrix crystallization via constructing stereocomplex crystallites at the interface, RSC Adv., 4, 49374, 10.1039/C4RA08823A

Wang, 2016, Highly toughened polylactide with epoxidized polybutadiene by in-situ reactive compatibilization, Polymer, 92, 74, 10.1016/j.polymer.2016.03.081

Wu, 2014, Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend, Polymer, 55, 6409, 10.1016/j.polymer.2014.10.004

Fang, 2014, Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer, ACS Appl. Mater. Interfaces, 6, 13552, 10.1021/am502735q

Sun, 2017, Flame retardant and mechanically tough poly(lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol, Compos. Commun., 6, 1, 10.1016/j.coco.2017.07.005

Ye, 2016, Poly(lactic acid) nanocomposites with improved flame retardancy and impact strength by combining of phosphinates and organoclay, Chin. J. Polym. Sci., 34, 785, 10.1007/s10118-016-1799-z

He, 2014, Super-tough poly(l-lactide)/crosslinked polyurethane blends with tunable impact toughness, RSC Adv., 4, 12857, 10.1039/C4RA00718B

Oatway, 2001, Phytic acid, Food. Rev. Int., 17, 419, 10.1081/FRI-100108531

E.L. Dias, J.A.W. Shoemaker, T.R. Boussie, V.J. Murphy, Process for production of hexamethylenediamine from 5 - hydroxymethylfurfural, WO, 2014.

Utech-polyurethane, Rennovia launches bio-based hexamethylenediamine. 〈http://utech-polyurethane.com/news/rennovia-launches-bio-based-hexamethylenediamine/〉, 2013 (Accesed 25 April 2013).

Liu, 2017, Synthesis and performances of poly(butylene-succinate) with enhanced viscosity and crystallization rate via introducing a small amount of diacetylene groups, Chin. Chem. Lett., 28, 354, 10.1016/j.cclet.2016.10.014

Garlotta, 2001, A literature review of poly(lactic acid), J. Polym. Environ., 9, 63, 10.1023/A:1020200822435

Zhao, 2016, New superefficiently flame-retardant bioplastic poly(lactic acid): flammability, thermal decomposition behavior, and tensile properties, ACS Sustain. Chem. Eng., 4, 202, 10.1021/acssuschemeng.5b00980

Dong, 2012, PLLA microalloys versus PLLA nanoalloys: preparation, morphologies, and properties, ACS Appl. Mater. Interfaces, 4, 3667, 10.1021/am3007577

Donald, 1982, The competition between shear deformation and crazing in glassy polymers, J. Mater. Sci., 17, 1871, 10.1007/BF00540402

Sue, 1991, Study of rubber-modified brittle epoxy systems. Part II: toughening mechanisms under mode-I fracture, Polym. Eng. Sci., 31, 275, 10.1002/pen.760310411

Han, 2015, Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends, J. Appl. Polym. Sci., 120, 3217, 10.1002/app.33338

Ma, 2012, Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents, Eur. Polym. J., 48, 146, 10.1016/j.eurpolymj.2011.10.015

Levchik, 2004, Thermal decomposition, combustion and fire-retardancy of polyurethanes - a review of the recent literature, Polym. Int., 53, 1585, 10.1002/pi.1314