Touching data with PropellerHand
Tóm tắt
Immersive analytics often takes place in virtual environments which promise the users immersion. To fulfill this promise, sensory feedback, such as haptics, is an important component, which is however not well supported yet. Existing haptic devices are often expensive, stationary, or occupy the user’s hand, preventing them from grasping objects or using a controller. We propose PropellerHand, an ungrounded hand-mounted haptic device with two rotatable propellers, that allows exerting forces on the hand without obstructing hand use. PropellerHand is able to simulate feedback such as weight and torque by generating thrust up to 11 N in 2-DOF and a torque of 1.87 Nm in 2-DOF. Its design builds on our experience from quantitative and qualitative experiments with different form factors and parts. We evaluated our prototype through a qualitative user study in various VR scenarios that required participants to manipulate virtual objects in different ways, while changing between torques and directional forces. Results show that PropellerHand improves users’ immersion in virtual reality. Additionally, we conducted a second user study in the field of immersive visualization to investigate the potential benefits of PropellerHand there.
Tài liệu tham khảo
Unity Technologies (2020) Unity Asset Store - VR beginner: the escape room. https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-beginner-the-escape-room-163264
Abdullah M, Kim M, Hassan W, Kuroda Y, Jeon S (2017) HapticDrone: an encountered-type kinesthetic haptic interface with controllable force feedback: initial example for 1D haptic feedback. In: UIST ’17. ACM, pp 115–117. https://doi.org/10.1145/3131785.3131821
Abtahi P, Landry B, Yang J, Pavone M, Follmer S, Landay JA (2019) Beyond the force: using quadcopters to appropriate objects and the environment for haptics in virtual reality. In: CHI ’19. ACM, pp 1–13. https://doi.org/10.1145/3290605.3300589
Achberger A, Heyen F, Vidakovic K, Sedlmair M (2021) PropellerHand: a hand-mounted, propeller-based force feedback device. In: IEEE conference on visual information communication and interaction (VINCI), pp 1–8
Al-Sada M, Jiang K, Ranade S, Piao X, Höglund T, Nakajima T (2018) HapticSerpent: a wearable haptic feedback robot for VR. In: CHI EA ’18. ACM, pp 1–6. https://doi.org/10.1145/3170427.3188518
Avila RS, Sobierajski LM (1996) A haptic interaction method for volume visualization. In: Proceedings of seventh annual IEEE visualization’96. IEEE, pp 197–204
Borro D, Savall J, Amundarain A, Gil JJ, Garcia-Alonso A, Matey L (2004) A large haptic device for aircraft engine maintainability. Comput Graph Appl 24(6):70–74. https://doi.org/10.1109/MCG.2004.45
Carter T, Seah SA, Long B, Drinkwater B, Subramanian S (2013) UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th annual ACM symposium on user interface software and technology, pp 505–514
Durbeck LJK, Macias NJ, Weinstein DM, Johnson CR, Hollerbach JM (1998) SCIRun haptic display for scientific visualization. In: Phantom users group meetings
Dwyer T, Marriott K, Isenberg T, Klein K, Riche N, Schreiber F, Stuerzlinger W, Thomas BH (2018) Immersive analytics: an introduction. In: Immersive analytics. Springer, pp 1–23
Fang C, Zhang Y, Dworman M, Harrison C (2020) Wireality: enabling complex tangible geometries in virtual reality with worn multi-string haptics. In: CHI ’20. ACM, pp 1–10. https://doi.org/10.1145/3313831.3376470
Fonnet A, Prie Y (2019) Survey of immersive analytics. IEEE Trans Vis Comput Graph 27(3):2101–2122
Fritz JP, Barner KE (1999) Design of a haptic data visualization system for people with visual impairments. IEEE Trans Rehabilit Eng 7(3):372–384
Gomes A, Rubens C, Braley S, Vertegaal R (2016) BitDrones: towards using 3D nanocopter displays as interactive self-levitating programmable matter. In: CHI ’16. ACM, pp 770–780. https://doi.org/10.1145/2858036.2858519
Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). In: ACM Proceedings of the human factors in computing systems (SIGCHI), pp 111–120
Gurocak H, Jayaram S, Parrish B, Jayaram U (2003) Weight sensation in virtual environments using a haptic device with air jets. JCISE 3(2):130–135. https://doi.org/10.1115/1.1576808
Heo S, Chung C, Lee G, Wigdor D (2018) Thor’s hammer: an ungrounded force feedback device utilizing propeller-induced propulsive force. In: CHI ’18. ACM, pp 1–11. https://doi.org/10.1145/3173574.3174099
Hoppe M, Knierim P, Kosch T, Funk M, Futami L, Schneegass S, Henze N, Schmidt A, Machulla T (2018) VRHapticDrones: providing haptics in virtual reality through quadcopters. In: MUM 2018. ACM, pp 7–18. https://doi.org/10.1145/3282894.3282898
Jansen Y, Dragicevic P, Isenberg P, Alexander J, Karnik A, Kildal J, Subramanian S, Hornbæk K (2015) Opportunities and challenges for data physicalization. In: ACM Proceedings of the human factors in computing systems (SIGCHI), pp 3227–3236
Je S, Lee H, Kim MJ, Bianchi A (2018) Wind-blaster: a wearable propeller-based prototype that provides ungrounded force-feedback. In: SIGGRAPH ’18. ACM, Article 23. https://doi.org/10.1145/3214907.3214915
Je S, Kim MJ, Lee W, Lee B, Yang X-D, Lopes P, Bianchi A (2019) Aero-plane: a handheld force-feedback device that renders weight motion illusion on a virtual 2D plane. In: UIST ’19. ACM, pp 763–775. https://doi.org/10.1145/3332165.3347926
Kim K, Ren X, Choi S, Tan HZ (2016) Assisting people with visual impairments in aiming at a target on a large wall-mounted display. 86:109–120
Knierim P, Kosch T, Schwind V, Funk M, Kiss F, Schneegass S, Henze N (2017) Tactile drones—providing immersive tactile feedback in virtual reality through quadcopters. In: CHI EA ’17. ACM, pp 433–436. https://doi.org/10.1145/3027063.3050426
Köpsel A, Majaranta Päivi IP, Huckauf A (2016) Effects of auditory, haptic and visual feedback on performing gestures by gaze or by hand. Behav Inf Technol 35(12):1044–1062
Koutsabasis P, Vogiatzidakis P (2019) Empirical research in mid-air interaction: a systematic review. Int J Hum Comput Interact 35(18):1747–1768
Kraus M, Klein K, Fuchs J, Keim DA, Schreiber F, Sedlmair M (2021) The value of immersive visualization. IEEE Comput Graph Appl 41(4):125–132
Kuling IA, Gijsbertse K, Krom BN, van Teeffelen KJ, van Erp JBF (2020) Haptic feedback in a teleoperated box & blocks task. In: International conference on human haptic sensing and touch enabled computer applications. Springer, pp 96–104
Lopes P, You S, Cheng L-P, Marwecki S, Baudisch P (2017) Providing haptics to walls & heavy objects in virtual reality by means of electrical muscle stimulation. In: CHI ’17. ACM, pp 1471–1482. https://doi.org/10.1145/3025453.3025600
Millais P, Jones SL, Kelly R (2018) Exploring data in virtual reality: comparisons with 2D data visualizations. In: Extended abstracts of the 2018 CHI conference on human factors in computing systems, pp 1–6
Monnai Y, Hasegawa K, Fujiwara M, Yoshino K, Inoue S, Shinoda H (2014) HaptoMime: mid-air haptic interaction with a floating virtual screen. In: Proceedings of the 27th annual ACM symposium on User interface software and technology, pp 663–667
Olshannikova E, Ometov A, Koucheryavy Y, Olsson T (2015) Visualizing big data with augmented and virtual reality: challenges and research agenda. J Big Data 2(1):1–27
Paneels S, Roberts JC (2009) Review of designs for haptic data visualization. IEEE Trans Haptics 3(2):119–137
Pezent E, O’Malley MK, Israr A, Samad M, Robinson S, Agarwal P, Benko H, Colonnese N (2020) Explorations of wrist haptic feedback for AR/VR interactions with Tasbi. In: CHI EA ’20. ACM, pp 1–4. https://doi.org/10.1145/3334480.3383151
Rakkolainen I, Freeman E, Sand A, Raisamo R, Brewster S (2020) A survey of mid-air ultrasound haptics and its applications. IEEE Trans Haptics 14(1):2–19
Ramloll R, Yu W, Brewster S, Riedel B, Burton M, Dimigen G (2000) Constructing sonified haptic line graphs for the blind student: first steps. In: Proceedings of the fourth international ACM conference on Assistive technologies, pp 17–25
Romano JM , Kuchenbecker KJ (2009) The AirWand: design and characterization of a large-workspace haptic device. In: ICRA ’09. IEEE, pp 1461–1466. https://doi.org/10.1109/ROBOT.2009.5152339
Sasaki T, Hartanto RS, Liu K-H, Tsuchiya K, Hiyama A, Inami M (2018) Leviopole: mid-air haptic interactions using multirotor. In: SIGGRAPH ’18. ACM, Article 12. https://doi.org/10.1145/3214907.3214913
Seifi H, Fazlollahi F, Oppermann M, Sastrillo JA, Ip J,Agrawal A, Park G, Kuchenbecker KJ, MacLean KE (2019) Haptipedia: accelerating haptic device discovery to support interaction & engineering design. In: CHI ’19. ACM, pp 1–12. https://doi.org/10.1145/3290605.3300788
Suzuki Y, Kobayashi M (2005) Air jet driven force feedback in virtual reality. Comput Graph Appl 25(1):44–47. https://doi.org/10.1109/MCG.2005.1
T-Motor. (n. d.) F40 PROIII. https://uav-en.tmotor.com/2019/Motor_0109/196.html
Tsai H-R, Rekimoto J, Chen B-Y (2019) Elasticvr: providing multilevel continuously-changing resistive force and instant impact using elasticity for VR. In: Proceedings of the CHI conference on human factors in computing systems, pp 1–10
Tsai H-R, Hung C-W, Wu T-C, Chen B-Y (2020) ElastOscillation: 3D Multilevel force feedback for damped oscillation on VR controllers. In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp 1–12
Van der Meijden OAJ, Schijven MP (2009) The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg Endosc 23(6):1180–1190. https://doi.org/10.1007/s00464-008-0298-x
Winfree KN, Gewirtz J, Mather T, Fiene J, Kuchenbecker KJ (2009) A high fidelity ungrounded torque feedback device: the iTorqU 2.0. In: World haptics ’09. IEEE, pp 261–266. https://doi.org/10.1109/WHC.2009.4810866
Winther F, Ravindran L, Svendsen KP, Feuchtner T (2020) Design and evaluation of a VR training simulation for pump maintenance. In: CHI EA ’20. ACM, pp 1–8. https://doi.org/10.1145/3334480.3375213
Witmer BG, Jerome CJ, Singer MJ (2005) The factor structure of the presence questionnaire. Presence Teleoper Virtual Environ 14(3):298–312
Xia P (2016) Haptics for product design and manufacturing simulation. IEEE Trans Haptics 9(3):358–375. https://doi.org/10.1109/TOH.2016.2554551
Yamaguchi K, Kato G, Kuroda Y, Kiyokawa K, Takemura H (2016) A non-grounded and encountered-type haptic display using a drone. In: SUI ’16. ACM, pp 43–46. https://doi.org/10.1145/2983310.2985746
Yano H, Yoshie M, Iwata H (2003) Development of a non-grounded haptic interface using the gyro effect. In: HAPTICS ’03. IEEE, pp 32–39. https://doi.org/10.1109/HAPTIC.2003.1191223
Yoo S, Kim S, Lee Y (2020) Learning by doing: evaluation of an educational VR application for the care of schizophrenic patients. In: CHI EA ’20. ACM, pp 1–6. https://doi.org/10.1145/3334480.3382851
Yu W, Ramloll R, Brewster S (2000) Haptic graphs for blind computer users. In: International workshop on haptic human–computer interaction. Springer, pp 41–51
Zenner A, Krüger A (2019) Drag:On: a virtual reality controller providing haptic feedback based on drag and weight shift. In: CHI ’19. ACM, pp 1–12. https://doi.org/10.1145/3290605.3300441