Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care

Journal of Nuclear Medicine - Tập 59 Số 1 - Trang 3-12 - 2018
Simon R. Cherry1,2, Terry Jones2, Joel S. Karp3, Jinyi Qi1, W.W. Moses4, Ramsey D. Badawi1,2
1Department of Biomedical Engineering, University of California, Davis, California
2Department of Radiology, University of California Davis Medical Center, Sacramento, California
3Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
4Lawrence Berkeley National Laboratory, Berkeley, California

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1088/0031-9155/57/13/4077

Poon JK . The Performance Limits of Long Axial Field of View PET Scanners [thesis]. Davis, CA: University of California, Davis; 2013.

10.2967/jnumed.116.188029

Karakatsanis, 2013, Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application, Phys Med Biol., 58, 7391, 10.1088/0031-9155/58/20/7391

Ho-Shon, 1996, Optimized sampling and parameter estimation for quantification in whole body PET, IEEE Trans Biomed Eng., 43, 1021, 10.1109/10.536903

Eriksson L Townsend DW Conti M . Potentials for large axial field of view positron camera systems. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (2008 NSS/MIC). Piscataway, NJ: IEEE; 2008:1632–1636.

Couceiro, 2007, Sensitivity assessment of wide axial field of view PET systems via Monte Carlo simulations of NEMA-like measurements, Nucl Instrum Meth A., 580, 485, 10.1016/j.nima.2007.05.145

Cherry, 2006, The 2006 Henry N. Wagner lecture: of mice and men (and positrons)—advances in PET imaging technology, J Nucl Med., 47, 1735

Crosetto DB . The 3-D complete body screening (3D-CBS) features and implementation. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (2003 NSS/MIC). Piscataway, NJ: IEEE;2004:2415–2419.

Badawi, 2000, The effect of camera geometry on singles flux, scatter fraction and trues and randoms sensitivity for cylindrical 3D PET: a simulation study, IEEE Trans Nucl Sci., 47, 1228, 10.1109/23.856575

Wong WH Zhang YX Liu ST . The initial design and feasibility study of an affordable high-resolution 100-cm long PET. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (2007 NSS/MIC). Piscataway, NJ: IEEE;2007:4117–4122.

10.1109/TNS.2004.829787

Surti, 2013, Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness, Phys Med Biol., 58, 3995, 10.1088/0031-9155/58/12/3995

10.1088/0031-9155/56/12/011

10.1016/j.nima.2007.06.112

Eriksson, 2011, Towards sub-minute PET examination times, IEEE Trans Nucl Sci., 58, 76, 10.1109/TNS.2010.2096542

Surti, 2015, Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner, Phys Med Biol., 60, 5343, 10.1088/0031-9155/60/13/5343

Schmall, 2016, Parallax error in long-axial field-of-view PET scanners: a simulation study, Phys Med Biol., 61, 5443, 10.1088/0031-9155/61/14/5443

Wang W, Gagnon D, Hiu X, Wang W, et al., inventors; Toshiba Medical Systems Corporation, assignee. Field-of-view-dependent coincidence window for positron emission tomography. U.S. patent US8809792 B2. August 19, 2014.

10.1088/0031-9155/59/3/R129

10.1088/0031-9155/59/18/5483

Mollet P Keereman V Vandenberghe S . Experimental evaluation of simultaneous emission and transmission imaging using TOF information. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). Piscataway, NJ: IEEE;2011:2976–2980.

10.1002/jmri.24285

Home page. EXPLORER consortium website. https://explorer.ucdavis.edu/. Accessed October 26, 2017.

High-risk, high-reward research program. National Institutes of Health website. https://commonfund.nih.gov/highrisk. Reviewed October 11, 2017. Accessed October 26, 2017.

10.1088/0031-9155/56/8/004

Somlai-Schweiger, 2015, Performance analysis of digital silicon photomultipliers for PET, J Instrum., 10, P05005, 10.1088/1748-0221/10/05/P05005

Degenhardt C Rodrigues P Trindade A . Performance evaluation of a prototype positron emission tomography scanner using digital photon counters (DPC). In: IEEE Nuclear Science Symposium and Medical Imaging Conference Record (2012 NSS/MIC). Piscataway, NJ: IEEE;2012:2820–2824.

Miller, 2015, Characterization of the Vereos digital photon counting PET system [abstract], J Nucl Med., 56, 434

NEMA NU 2-2012 Performance Measurements of Positron Emission Tomographs. Arlington, VA: National Electrical Manufacturers Association; 2013.

10.1126/scitranslmed.aaf6169

10.1007/s002590100537

10.1007/s002590050355

10.2967/jnumed.113.133892

10.7150/thno.6592

10.1038/nmeth.3320

10.1038/nrneurol.2015.197

10.1038/ajg.2014.148

10.1093/eurheartj/eht246

10.2967/jnumed.115.155002

Bergstrom M . The use of microdosing in the drug development of small organic and protein therapeutics. J Nucl Med. 2017;58:1188–1195.

10.1038/nrclinonc.2011.141

10.1073/pnas.052709599

Bansal, 2015, Novel Zr-89 cell labeling approach for PET-based cell trafficking studies, EJNMMI Res., 5, 19, 10.1186/s13550-015-0098-y

Charoenphun, 2015, [89Zr]oxinate4 for long-term in vivo cell tracking by positron emission tomography, Eur J Nucl Med Mol Imaging., 42, 278, 10.1007/s00259-014-2945-x

10.2967/jnumed.108.059360

10.3109/00016348409155554

10.1007/s00247-009-1459-3

Griffiths, 2017, Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study, Lancet., 389, 538, 10.1016/S0140-6736(16)31723-8

10.2967/jnumed.113.123919

Phelps ME . PET: Molecular Imaging and Its Biological Applications. New York, NY: Springer; 2004.

10.2967/jnumed.116.182345

Nehmeh, 2007, Deep-inspiration breath-hold PET/CT of the thorax, J Nucl Med., 48, 22

10.7150/thno.3645

Jadvar, 2017, Targeted radionuclide therapy: an evolution toward precision cancer treatment, AJR., 209, 277, 10.2214/AJR.17.18264

Gundacker, 2016, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J Instrum., 11, P08008, 10.1088/1748-0221/11/08/P08008

Gundacker, 2016, Measurement of intrinsic rise times for various L(Y) SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET, Phys Med Biol., 61, 2802, 10.1088/0031-9155/61/7/2802

Lecoq, 2014, Can transient phenomena help improving time resolution in scintillators?, IEEE Trans Nucl Sci., 61, 229, 10.1109/TNS.2013.2282232

Brunner, 2017, BGO as a hybrid scintillator/Cherenkov radiator for cost-effective time-of-flight PET, Phys Med Biol., 62, 4421, 10.1088/1361-6560/aa6a49

Kwon, 2016, Bismuth germanate coupled to near ultraviolet silicon photomultipliers for time-of-flight PET, Phys Med Biol., 61, L38, 10.1088/0031-9155/61/18/L38