Tosio Kato’s work on non-relativistic quantum mechanics: part 1
Tóm tắt
Từ khóa
Tài liệu tham khảo
1980 Wiener and Steele Prizes Awarded. Not. A.M.S. 27, 528–533 (1980)
Agmon, S.: Spectral properties of Schrödinger operators, In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 679–683
Agmon, S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2, 151–218 (1975)
Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N-body Schrödinger operators. Princeton University Press, Princeton, NJ (1982)
Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrödinger Hamiltonians. Commun. Math. Phys. 22, 269–279 (1971)
Aizenman, M., Simon, B.: Brownian motion and Harnack’s inequality for Schrödinger operators. Commun. Pure Appl. Math. 35, 209–273 (1982)
Albeverio, S.: On bound states in the continuum of N-body systems and the Virial theorem. Ann. Phys. 71, 167–276 (1972)
Albeverio, S., Gesztesy, F., Høegh-Krohn, R.: The low energy expansion in nonrelativistic scattering theory. Ann. Inst. Henri Poincaré A 37, 1–28 (1982)
Albeverio, S., Bollé, D., Gesztesy, F., Høegh-Krohn, R., Streit, L.: Low-energy parameters in nonrelativistic scattering theory. Ann. Phys. 148, 308–326 (1983)
Ammann, B., Carvalho, C., Nistor, V.: Regularity for eigenfunctions of Schrödinger operators. Lett. Math. Phys. 101, 49–84 (2012)
Amrein, W., Boutet de Monvel, A., Georgescu, V.: $$C_0$$ C 0 -Groups Commutator Methods and Spectral Theory of N-Body Hamiltonians. Birkhäuser, Basel (1996)
Amrein, W., Sinha, K.: On pairs of projections in a Hilbert space. Linear Algebra Appl. 208(209), 425–435 (1994)
Ando, T., Nishio, K.: Positive selfadjoint extensions of positive symmetric operators. Tohoku Math. J. 22, 65–75 (1970)
Arai, M.: On essential self-adjointness of Dirac operators. RIMS Kokyuroku, Kyoto Univ. 242, 10–21 (1975)
Arai, M.: On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of dirac operators with matrix valued potentials. Publ. RIMS, Kyoto Univ. 19, 33–57 (1983)
Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235–249 (1957)
Aronszajn, N.: On a problem of Weyl in the theory of singular Sturm–Liouville equations. Am. J. Math. 79, 597–610 (1957)
Atkinson, F., Everitt, W.: Bounds for the point spectrum for a Sturm–Liouville equation. Proc. R. Soc. Edinb. Sect. A 80, 57–66 (1978)
Avron, J.: Barry and Pythagoras. Am. Math. Soc. 63, 878–889 (2016)
Avron, J., Elgart, A.: Adiabatic theorem without a gap condition. Commun. Math. Phys. 203, 445–463 (1999)
Avron, J., Fraas, M., Graf, G.M., Grech, P.: Adiabatic theorems for generators of contracting evolutions. Commun. Math. Phys. 314, 163–191 (2012)
Avron, J., Herbst, I.: Spectral and scattering theory of Schrödinger operators related to the Stark effect. Commun. Math. Phys. 52, 239–254 (1977)
Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields. I. General interactions. Duke Math. J. 45, 847–883 (1978)
Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields, II. Separation of center of mass in homogeneous magnetic fields. Ann. Phys. 114, 431–451 (1978)
Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields, III. Atoms in homogeneous magnetic field. Commun. Math. Phys. 79, 529–572 (1981)
Avron, J., Herbst, I., Simon, B.: Schrödinger operators with magnetic fields, IV. Strongly bound states of hydrogen in intense magnetic field. Phys. Rev. A 20, 2287–2296 (1979)
Avron, J.E., Howland, J.S., Simon, B.: Adiabatic theorems for dense point spectra. Commun. Math. Phys. 128, 497–507 (1990)
Avron, J., Seiler, R., Simon, B.: Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51, 51–53 (1983)
Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120, 220–237 (1994)
Avron, J., Seiler, R., Yaffe, L.G.: Adiabatic theorems and applications to the quantum Hall effect. Commun. Math. Phys. 110, 33–49 (1987)
Babbitt, D., Balslev, E.: Local distortion techniques and unitarity of the S-matrix for the 2-body problem. J. Math. Anal. Appl. 54, 316–347 (1976)
Bachmann, S., de Roeck, W., Fraas, M.: The adiabatic theorem for many-body quantum systems. Preprint arXiv:1612.01505 [math.SP] (2016)
Baker, G.: The theory and application of the Padé approximant method. Adv. Theor. Phys. 1, 1–58 (1965)
Baker, G.: Essentials of Padé Approximants. Academic Press, New York (1975)
Baker, G., Gamel, J. (eds.): The Padé Approximant in Theoretical Physics. Academic Press, New York (1970)
Balinsky, A.A., Evans, W.D.: Spectral Analysis of Relativistic Operators. Imperial College Press, London (2011)
Balslev, E.: Analytic scattering theory of two-body Schrödinger operators. J. Funct. Anal. 29, 375–396 (1978)
Balslev, E.: Analytic scattering theory for many-body systems below the smallest three-body threshold. Commun. Math. Phys. 77, 173–210 (1980)
Balslev, E.: Analytic scattering theory of quantum mechanical three-body systems. Ann. Inst. Henri Poincaré Sect. A 32, 125–160 (1980)
Balslev, E., Combes, J.M.: Spectral properties of many-body Schrödinger operators with dilation analytic interactions. Commun. Math. Phys. 22, 280–294 (1971)
Banks, T., Bender, C., Wu, T.T.: Coupled anharmonic oscillators. I. Equal-mass case. Phys. Rev. D 8, 3346–3366 (1973)
Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Birkhauser, Boston (1985)
Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. A.M.S. 123, 1897–1905 (1995)
Belopol’skii̧, A.L., Birman, M.S.: Existence of wave operators in scattering theory for a pair of spaces. Izv. Akad. Nauk SSSR Ser. Mat. 32, 1162–1175 (1968)
Ben-Artzi, M., Klainerman, S.: Decay and regularity for the Schrödinger equation. J. d’Anal. Math. 58, 25–37 (1992)
Benassi, L., Grecchi, V.: Resonances in the Stark effect and strongly asymptotic approximations. J. Phys. B 13, 911–924 (1980)
Bender, C., Wu, T.T.: Anharmonic oscillator, II. A study of perturbation theory in large order. Phys. Rev. D 7, 1620–1636 (1973)
Benedikter, N., Porta, M., Schlein, B.: Effective Evolution Equations from Quantum Dynamics, Springer Briefs in Mathematical Physics, vol. 7. Springer, Berlin (2016)
Benguria, R., Lieb, E.H.: Proof of the stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)
Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45–57 (1984)
Birman, M.Š.: Perturbation of the spectrum of a singular elliptic operator under variation of the boundary and boundary conditions. Dokl. Akad. Nauk. SSSR 137 761–763 (Eng. Trans.: Soviet Math. Dokl. 2 (1961), 326–328)
Birman, M.Š.: Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions. Vestnik Leningrad. Univ. 17 (1962), 22–55 (Eng Trans.: Suslina, T., Yafaev, D. (eds.) American Mathematical Society Translation Series 2, vol. 225, pp. 19–53. American Mathematical Society, Providence, RI (2008))
Birman, M.Š.: Conditions for the existence of wave operators. Dokl. Akad. Nauk. SSSR 143, 506–509 (1962)
Birman, M.Š.: A criterion for existence of wave operators. Izv. Akad. Nauk . SSSR Ser. Mat, 27, 883–906 (1963) (Eng. Trans.: A.M.S. Transl. 54, 91–117 (1966))
Birman, M.Š.: A local criterion for the existence of wave operators, Izv. Akad. Nauk SSSR Ser. Mat. 32, 914–942 (1968) (Eng. Trans.: Math. USSR–Izv. 2, 879–906 (1968))
Birman, M.Š.: A test of the existence of complete wave operators in scattering theory for a pair of spaces. In: 1970 Problems of Mathematical Physics, No. 4: Spectral Theory. Wave Process, pp. 22–26 (1970)
Birman, M.Š., Krein, M.G.: On the theory of wave operators and scattering operators. Dokl. Akad. Nauk. SSSR 144, 475–478 (1962) (Eng. Trans: Soviet Math. Dokl. 3, 740–744 (1962))
Bollé, D., Gesztesy, F., Danneels, C.: Threshold scattering in two dimensions. Ann. Inst. Henri Poincaré Phys. Théor. 48, 175–204 (1988)
Bollé, D., Gesztesy, F., Klaus, M.: Scattering theory for one-dimensional systems with $$\int dx\, V (x) = 0$$ ∫ d x V ( x ) = 0 . J. Math. Anal. Appl. 122, 496–518 (1987) (Errata: J. Math. Anal. Appl. 130, 590 (1988))
Bollé, D., Gesztesy, F., Wilk, S.F.J.: A complete treatment of low-energy scattering in one dimension. J. Oper. Theory 13, 3–31 (1985)
Borg, G.: On the point spectra of $$y^{\prime \prime } + (A - q(x))y = 0$$ y ″ + ( A - q ( x ) ) y = 0 . Am. J. Math. 73, 122–126 (1951)
Böttcher, A., Spitkovsky, I.: A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432, 1412–1459 (2010)
Böttcher, A., Spitkovsky, I., Simon, B.: Similarity between two projections. Preprint arXiv:1705.08937 [math.SP] (2017)
Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)
Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum-statistical Mechanics. II. Equilibrium States. Models in Quantum-statistical Mechanics. Springer, New York (1981)
Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)
Brownell, F.: Spectrum of the static potential Schrödinger equation over $$E_n$$ E n . Ann. Math. 54, 554–594 (1951)
Brownell, F.: A note on Kato’s uniqueness criterion for Schrödinger operator self-adjoint extensions. Pac. J. Math. 9, 953–973 (1959)
Bruneau, L., Dereziński, J., Georgescu, V.: Homogeneous Schrödinger operators on half-line. Ann. Henri Poincaré 12, 547–590 (2011)
Butler, J.: Perturbation series for eigenvalues of analytic non-symmetric operators. Arch. Math. 10, 21–27 (1959)
Caliceti, E., Grecchi, V., Maioli, M.: The distributional Borel summability and the large coupling $$\Phi ^4$$ Φ 4 lattice fields. Commun. Math. Phys. 104, 163–174 (1986)
Caliceti, E., Grecchi, V., Maioli, M.: Stark resonances: asymptotics and distributional Borel sum. Commun. Math. Phys. 157, 347–357 (1993)
Cancelier, C., Martinez, A., Ramond, T.: Quantum resonances without analyticity. Asymptot. Anal. 44, 47–74 (2005)
Cape, J., Tang, M., Priebe, C.: The Kato–Temple inequality and eigenvalue concentration. Preprint arXiv:1603.06100 [math.SP]
Carleman, T.: Les Fonctions Quasianalytiques. Gauthier-Villars, Paris (1926)
Carleman, T.: Sur un problème d’unicité pour les systèmes d’eq́uations aux derivées partielles à deux variables indépendantes. Ark. Mat. 26B, 1–9 (1939)
Carmona, R.: Regularity properties of Schrödinger and Dirichlet semigroups. J. Funct. Anal. 17, 227–237 (1974)
Cattaneo, L., Graf, G.M., Hunziker, W.: A general resonance theory based on Mourre’s inequality. Ann. Inst. Henri Poincaré 7, 583–601 (2006)
Chandler-Wilde, S.N., Lindner, M.: Sufficiency of Favard’s condition for a class of band-dominated operators on the axis. J. Funct. Anal. 254, 1146–1159 (2008)
Chandler-Wilde, S.N., Lindner, M.: Limit operators, collective compactness, and the spectral theory of infinite matrices. Mem. A.M.S. 210, 989 (2011)
Chernoff, P.: Semigroup product formulas and addition of unbounded operators. Bull. Am. Math. Soc. 76, 395–398 (1970)
Chernoff, P.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401–414 (1973)
Chernoff, P.: Product formulas, nonlinear semigroups, and addition of unbounded operators. Mem. A.M.S. 140, 1–121 (1974)
Chernoff, P.: Schrödinger and Dirac operators with singular potentials and hyperbolic equations. Pac. J. Math. 72, 361–382 (1977)
Christ, M., Kiselev, A.: Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: some optimal results. J.A.M.S. 11, 771–797 (1998)
Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc., New York (1955) (Krieger Publishing Company, Malabar, FL, Reprint (1985))
Conley, C., Rejto, P.: Spectral concentration II, general theory. In: Wilcox, C.H. (ed.) Perturbation Theory and Its Applications in Quantum Mechanics, pp. 129–143. Wiley, New York (1966)
Cordes, H.O.: With Tosio Kato at Berkeley. In: Fujita, H., Kuroda, S.T., Okamoto, H. (eds.) Tosio Kato’s Method and Principle for Evolution Equations in Mathematical Physics. Papers from the International Workshop held at Hokkaido University, Sapporo, June 27–29, 2001, pp. 1-17. Kyoto RIMS (2001)
Cordes, H.O., Jensen, A., Kuroda, S.T., Ponce, G., Simon, B., Taylor, M.: Tosio Kato (1917–1999). Not. A.M.S. 47, 650–657 (2000)
Cycon, H.L.: On the stability of selfadjointness of Schrödinger operators under positive perturbations. Proc. R. Soc. Edinb. Sect. A 86, 165–173 (1980)
Cycon, H.L.: Resonances defined by modified dilations. Helv. Phys. Acta 58, 969–981 (1985)
Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Springer, Berlin (1987)
Davies, E.B.: A model for absorption or decay. Helv. Phys. Acta 48, 365–382 (1975)
Davies, E.B.: One-Parameter Semigroups. Academic Press, London (1980)
Davies, E.B., Hinz, A.M.: Kato class potentials for higher order elliptic operators. J. Lond. Math. Soc. 58, 669–678 (1998)
Davis, C.: Separation of two linear subspaces. Acta Sci. Math. (Szeged) 16, 172–187 (1958)
de Branges, L.: Perturbation of self-adjoint transformations. Am. J. Mach. 84, 543–580 (1962)
Deift, P., Killip, R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203, 341–347 (1999)
Deift, P., Simon, B.: On the decoupling of finite singularities from the question of asymptotic completeness in two body quantum systems. J. Funct. Anal. 23, 218–238 (1976)
Deift, P., Simon, B.: A time-dependent approach to the completeness of multiparticle quantum systems. Commun. Pure Appl. Math. 30, 573–583 (1977)
Del Pasqua, D.: Su una nozione di varietà lineari disgiunte di uno spazio di Banach (On a notion of disjoint linear manifolds of a Banach space). Rend. Mat. Appl. 5, 406–422 (1955)
del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. J. d’Anal. Math. 69, 153–200 (1996)
del Rio, R., Makarov, N., Simon, B.: Operators with singular continuous spectrum: II. Rank one operators. Commun. Math. Phys. 165, 59–67 (1994)
Deng, Q., Ding, Y., Yao, X.: Maximal and minimal forms for generalized Schrödinger operators. Indiana Univ. Math. J. 63, 727–738 (2014)
Dereziński, J.: Asymptotic completeness of long-range N-body quantum systems. Ann. Math. 138, 427–476 (1993)
Dereziński, J., Gérard, C.: Scattering Theory of Classical and Quantum N-Particle Systems. Springer, New York (1997). May be downloaded from http://www.fuw.edu.pl/~derezins/bookn.pdf
Devinatz, A.: Essential self-adjointness of Schrödinger-type operators. J. Funct. Anal. 25, 58–69 (1977)
Dinu, V., Jensen, A., Nenciu, G.: Nonexponential decay laws in perturbation theory of near threshold eigenvalues. J. Math. Phys. 50, 013516 (2009)
Dinu, V., Jensen, A., Nenciu, G.: Perturbation of near threshold eigenvalues: crossover from exponential to non-exponential decay laws. Rev. Math. Phys. 23, 83–125 (2011)
Dixmier, J.: Position relative de deux variétés linéaires fermées dans un espace de Hilbert. Revue Sci. 86, 387–399 (1948)
Dolph, C., Howland, J.: Dedication of special issue in honor of Otto Laporte and Tosio Kato. JMAA 127, 299–311 (1987)
Dou, Y.N., Shi, W.J., Cui, M.M., Du, H.K.: General explicit expressions for intertwining operators and direct rotations of two orthogonal projections. Preprint arXiv:1705.05870v1 [math.SP] (2017)
Dunford, N.: Spectral theory I. Convergence to projections. Trans. A.M.S. 54, 185–217 (1943)
Dyatlov, S., Zworski, M.: Mathematical Theory of Scattering Resonances (book in preparation)
Dyson, F.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–632 (1952)
Eastham, M.S.P.: On the absence of square-integrable solutions of the Sturm–Liouville equation. In: Everitt, W.M., Sleeman, B.D. (eds.) Ordinary and Partial Differential Equations, Dundee 1976. Lecture Notes in Mathematics, vol. 564. Springer, Berlin (1976)
Eastham, M.S.P., Evans, W.D., McLeod, J.B.: The essential self-adjointness of Schrödinger-type operators. Arch. Ration. Mech. Anal. 60, 185–204 (1976)
Eastham, M.S.P., Kalf, H.: Schrödinger-type Operators with Continuous Spectra. Research Notes in Mathematics. Pitman, Boston (1982)
Evans, W.D.: On the essential self-adjointness of powers of Schrödinger-type operators. Proc. R. Soc. Edinb. 79A, 61–77 (1977)
Eckmann, J.P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in $$P(\varphi )_2$$ P ( φ ) 2 theories. Commun. Math. Phys. 39, 251–271 (1975)
Effros, E.G.: Why the circle is connected: an introduction to quantized topology. Math. Intell. 11(1), 27–34 (1989)
Efimov, V.: Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B 33, 563–564 (1970)
Elgart, A., Hagedorn, G.A.: A note on the switching adiabatic theorem. J. Math. Phys. 53, 102202 (2012)
Enss, V.: Asymptotic completeness for quantum-mechanical potential scattering. I. Short-range potentials. Commun. Math. Phys. 61, 285–291 (1978)
Enss, V.: Completeness of three-body quantum scattering. In: Blanchard, Ph, Streit, L. (eds.) Lecture Notes in Mathematics, vol. 1031, pp. 62–88. Springer, Berlin (1983)
Epstein, P.: The Stark effect from the point of view of Schroedinger’s quantum theory. Phys. Rev. 28, 695–710 (1926)
Esteban, M.J., Lewin, M., Séré, E.: Variational methods in relativistic quantum mechanics. Bull. A.M.S. 45, 535–593 (2008)
Esteban, M.J., Loss, M.: Self-adjointness for Dirac operators via Hardy–Dirac inequalities. J. Math. Phys. 48, 112107 (2007)
Estienne, C., Busuttil, M., Moini, A., Drake, G.: Critical nuclear charge for two-electron atoms. Phys. Rev. Lett. 112, 173001 (1–5) (2014)
Faris, W.: The product formula for semigroups defined by friedrichs extensions. Pac. J. Math. 22, 47–70 (1967)
Faris, W.G.: Self-Adjoint Operators. Lecture Notes in Mathematics, vol. 433. Springer, Berlin (1975)
Faris, W., Lavine, R.: Commutators and self-adjointness of Hamiltonian operators. Commun. Math. Phys. 35, 39–48 (1974)
Figiel, T., Johnson, W.B.: The Lidskii trace property and the nest approximation property in Banach spaces. J. Funct. Anal. 271, 566–576 (2016)
Fock, V.A.: On the Schrödinger equation of the helium atom. I, II. NorskeVid. Selsk. Forh. Trondheim 31, 138–151 (1958)
Fock, V.A.: On the Schrödinger equation of the helium atom. I, II. Russian original: Izv. Akad. Nauk SSSR, Ser. Fiz. 18, 161–172 (1954)
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard-Sørensen, T.: The electron density is smooth away from the nuclei. Commun. Math. Phys. 228, 401–415 (2002)
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Analyticity of the density of electronic wave functions. Arkiv Math. 42, 87–106 (2004)
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Sharp regularity for Coulombic many-electron wave functions. Commun. Math. Phys. 255, 183–227 (2005)
Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Analytic structure of many-body Coulombic wave functions. Commun. Math. Phys. 289, 291–310 (2009)
Fournais, S., Skibsted, E.: Zero energy asymptotics of the resolvent for a class of slowly decaying potentials. Math. Z. 248, 593–633 (2004)
Frank, R.L., Bellazzini, J., Lieb, E.H., Seiringer, R.: Existence of ground states for negative ions at the binding threshold. Rev. Math. Phys. 26, 1350021 (2014)
Frank, R.L., Laptev, A., Weidl, T.: Lieb–Thirring Inequalities (book in preparation)
Frank, R.L., Lieb, E.H.: A new, rearrangement-free proof of the sharp Hardy–Littlewood–Sobolev inequality. In: Brown, B.M., Lang, J., Wood, I.G. (eds.) Spectral Theory, Function Spaces and Inequalities, pp. 55–67. Birkhäuser/Springer, Basel (2012)
Frank, R.L., Lieb, E.H., Seiringer, R.: Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators. J.A.M.S. 21, 925–950 (2008)
Frank, R.L., Lieb, E.H., Seiringer, R.: Binding of polarons and atoms at threshold. Commun. Math. Phys. 313, 405–424 (2012)
Frank, R.L., Seiringer, R.: Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255, 3407–3430 (2008)
Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spec. Theory 7, 633–658 (2017)
Frehse, J.: Essential selfadjointness of singular elliptic operators. Bol. Soc. Brasil. Mat. 8, 87–107 (1977)
Freudenthal, H.: Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren. Proc. Akad. Wet. Amst. 39, 832–833 (1936)
Friedrichs, K.O.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. I. Math. Ann. 109(465–87), 685–713 (1934)
Friedrichs, K. O.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. II. 110, 777–779 (1934/35)
Friedrichs, K.O.: Über die Spektralzerlegung eines Integraloperators. Math. Ann. 115, 249–272 (1938)
Friedrichs, K.O.: On the perturbation of continuous spectra. Commun. Pure Appl. Math. 1, 361–406 (1948)
Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)
Friedrichs, K.O.: Perturbation of Spectra in Hilbert Space. American Mathematical Society, Providence, RI (1965)
Friedrichs, K.O., Rejto, P.: On a perturbation through which a discrete spectrum becomes continuous. Commun. Pure Appl. Math. 15, 219–235 (1962)
Froese, R., Herbst, I.: Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators. Commun. Math. Phys. 87, 429–447 (1982)
Froese, R., Herbst, I., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: On the absence of positive eigenvalues for one-body Schrödinger operators. J. d’Anal. Math. 41, 272–284 (1982)
Froese, R., Herbst, I., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: $$L^2$$ L 2 -exponential lower bounds to solutions of the Schrödinger equation. Commun. Math. Phys. 87, 265–286 (1982)
Fujii, J., Fujii, M., Furuta, T., Nakamoto, R.: Norm inequalities equivalent to Heinz inequality. Proc. AMS 118, 827–830 (1993)
Fujita, H., Okamoto, H., Kuroda, S.T.: Edited correspondence of T. Kato and with E.C. Kemble and J. von Neumann (in preparation)
Gâtel, Y., Yafaev, D.: On solutions of the Schrödinger equation with radiation conditions at infinity: the long-range case. Ann. Inst. Fourier (Grenoble) 49, 1581–1602 (1999)
Gel’fand, I.M.: Normierte Ringe. Rec. Math. [Mat. Sbornik] N.S. 9, 3–24 (1941)
Georgescu, V., Iftimovici, A.: Crossed products of $$C^*$$ C ∗ -algebras and spectral analysis of quantum Hamiltonians. Commun. Math. Phys. 228, 519–560 (2002)
Gérard, C.: Distortion analyticity for N-particle Hamiltonians. Helv. Phys. Acta 66, 216–225 (1993)
Gesztesy, F., Littlejohn, L.L.: Factorizations and Hardy–Rellich-type inequalities. In: Gesztesy, F., Hanche-Olsen, H., Jakobsen, E., Lyubarskii, Y., Risebro, N., Seip, K. (eds.) Partial Differential Equations, Mathematical Physics, and Stochastic Analysis. A Volume in Honor of Helge Holden’s 60th Birthday, EMS Congress Reports (to appear)
Gesztesy, F., Mitrea, M., Nenciu, I., Teschl, G.: Decoupling of deficiency indices and applications to Schrödinger-type operators with possibly strongly singular potentials. Adv. Math. 301, 1022–1061 (2016)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). (first edition: 1977)
Glimm, J.: Boson fields with nonlinear self-interaction in two dimensions. Commun. Math. Phys. 8, 12–25 (1968)
Glimm, J., Jaffe, A.: A $$\lambda (\varphi ^4)_2$$ λ ( φ 4 ) 2 quantum field theory without cutoffs. I. Phys. Rev. 176, 1945–1951 (1968)
Glimm, J., Jaffe, A.: The $$\lambda (\varphi ^4)_2$$ λ ( φ 4 ) 2 quantum field theory without cutoffs, IV: perturbation of the Hamiltonian. J. Math. Phys. 11, 1568–1584 (1972)
Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987). (First edition: 1981)
Golub, G., van der Vorst, H.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123, 35–65 (2000)
Graf, G.M.: Asymptotic completeness for N-body short-range quantum systems: a new proof. Commun. Math. Phys. 132, 73–101 (1990)
Graf, G.M., Schenker, D.: Classical action and quantum N-body asymptotic completeness. In: Truhlar, D.G., Simon, B. (eds.) Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics, pp. 103–119. Springer, Berlin (1997)
Graffi, S., Grecchi, V.: Resonances in Stark effect and perturbation theory. Commun. Math. Phys. 62, 83–96 (1978)
Graffi, S., Grecchi, V.: Existence and Borel summability of resonances in hydrogen Stark effect. Lett. Math. Phys. 3, 336–340 (1978)
Graffi, S., Grecchi, V.: On a relation between Stieltjes and Borel summabilities. J. Math. Phys. 19, 1002–1007 (1978)
Graffi, S., Grecchi, V.: Confinement of the resonances in hydrogen Stark effect. J. Phys. B 12, L265–L267 (1979)
Graffi, S., Grecchi, V.: Resonances in the Stark effect of atomic systems. Commun. Math. Phys. 79, 91–109 (1981)
Graffi, S., Grecchi, V., Levoni, S., Maioli, M.: Resonances in one-dimensional Stark effect and continued fractions. J. Math. Phys. 20, 685–690 (1979)
Graffi, S., Grecchi, V., Simon, B.: Borel summability: application to the anharmonic oscillator. Phys. Lett. 32D, 631–634 (1970)
Graffi, S., Grecchi, V., Simon, B.: Complete separability of the Stark effect in hydrogen. J. Phys. A 12, L193–L195 (1979)
Gridnev, D.: Bound states at threshold resulting from Coulomb repulsion. J. Math. Phys. 53, 102108 (2012)
Griffiths, D.: Introduction to Quantum Mechanics. Pearson Prentice Hall, Upper Saddle River (2004). (First edition: 1995)
Güneysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275, 331–348 (2013)
Gurarĭi, V.I.: Openings and inclinations of subspaces of a Banach space. Teor. Funkc. Funkc. Anal. ih Priloz. 1, 194–204 (1965)
Gustafson, S., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics, 2nd edn. Springer, Heidelberg (2011). (First edition: 2003)
Hagedorn, G.A.: A link between scattering resonances and dilation analytic resonances in few body quantum mechanics. Commun. Math. Phys. 65, 181–188 (1979)
Hagedorn, G.A.: Proof of the Landau–Zener formula in an adiabatic limit with small eigenvalue gaps. Commun. Math. Phys. 136, 433–449 (1991)
Halpern, H.: MathSciNet review of [31] MR1262254 (1995)
Hardy, G.H.: Divergent Series. Oxford University Press, London (1949)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). (original edition 1934)
Harrell, E.: Generalizations of Temple’s inequality. Proc. A.M.S. 69, 271–276 (1978)
Harrell, E., Simon, B.: The mathematical theory of resonances whose widths are exponentially small. Duke Math. J. 47, 845–902 (1980)
Hartman, P., Wintner, A.: A criterion for the non-degeneracy of the wave equation. Am. J. Math. 71, 206–213 (1949)
Hastings, M.B., Wen, X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)
Heisenberg, W.: Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen, I. Z. Phys. 120, 513–538 (1943)
Heisenberg, W.: Die “beobachtbaren Grössen” in der Theorie der Elementarteilchen, II. Z. Phys. 120, 673–702 (1943)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. I. Commun. Partial Differ. Equ. 9, 337–408 (1984)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. II. Ann. Inst. Henri Poincaré Phys. Théor. 42, 127–212 (1985)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. III. Math. Nachr. 124, 263–313 (1985)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. IV. Commun. Partial Differ. Equ. 10, 245–340 (1985)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. V. In: Current Topics in Partial Differential Equations, pp. 133–186, Kinokuniya, Tokyo (1986)
Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit. VI. Ann. Inst. Henri Poincaré Phys. Théor. 46, 353–372 (1987)
Helffer, B., Sjöstrand, J.: Résonances en limite semi-classique [Resonances in the semiclassical limit]. Mém. Soc. Math. Fr. (N.S.) No. 24–25 (1986)
Hellwig, B.: Ein Kriterium für die Selbstadjungiertheit elliptischer Differentialoperatoren im $$R_n$$ R n . Math. Z. 86, 255–262 (1964)
Hellwig, B.: Ein Kriterium für die Selbstadjungiertheit singulärer elliptischer Differentialoperatoren im Gebiet G. Math. Z. 89, 333–344 (1965)
Hellwig, B.: A criterion for self-adjointness of singular elliptic differential operators. J. Math. Anal. Appl. 26, 279–291 (1969)
Henrard, J.: The adiabatic invariant in classical mechanics. Dyn. Rep. Expo. Dyn. Syst. 2, 117–235 (1993)
Herbst, I.: Spectral theory of the operator $$(p^2 + m^2)^{1/2} - Ze^2/r,$$ ( p 2 + m 2 ) 1 / 2 - Z e 2 / r , . Commun. Math. Phys. 53, 285–294 (1977)
Herbst, I.: Dilation analyticity in constant electric field, I: the two body problem. Commun. Math. Phys. 64, 279–298 (1979)
Herbst, I., Møller, J.S., Skibsted, E.: Spectral analysis of N-body Stark Hamiltonians. Commun. Math. Phys. 174, 261–294 (1995)
Herbst, I., Simon, B.: Some remarkable examples in eigenvalue perturbation theory. Phys. Lett. 78B, 304–306 (1978)
Herbst, I., Simon, B.: Dilation analyticity in constant electric field, II: the N-body problem. Borel summability. Commun. Math. Phys. 80, 181–216 (1981)
Herbst, I., Sloan, A.: Perturbations of translation invariant positivity preserving semigroups in $$L^2(\mathbb{R})$$ L 2 ( R ) . Trans. A.M.S. 236, 325–360 (1978)
Hermite, C.: Sur la function exponentielle. C.R. Acad. Sci. 76, 18–24, 74–79, 226–233, 285–293 (1873)
Hess, H., Schrader, R., Uhlenbrock, D.A.: Domination of semigroups and generalization of Kato’s inequality. Duke Math. J. 44, 893–904 (1977)
Hill, F.N.: On the analytic structure of the wavefunction of a hydrogen atom in an analytic potential. J. Math. Phys. 25, 1577–1583 (1984)
Hirsbrunner, D., Loeffel, J.: Sur les séries asymptotiques sommables selon Borel. Helv. Phys. Acta 48, 546 (1975)
Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergaard Sørensen, T.: Electron wavefunctions and densities for atoms. Ann. Inst. Henri Poincaré 2, 77–100 (2011)
Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Simon, B.: A multiparticle Coulomb system with bound state at threshold. J. Phys. A 16, 1125–1131 (1983)
Hörmander, L.: The Analysis of Linear Partial Differential Operators, II. Differential Operators with Constant Coefficients. Springer, Berlin (2005). (original edition: 1983)
Hörmander, L.: The Analysis of Linear Partial Differential Operators, IV. Fourier Integral Operators. Springer, Berlin (2009). (original edition: 1985)
Howland, J.: Banach space techniques in the perturbation theory of self-adjoint operators with continuous spectra. J. Math. Anal. Appl. 20, 22–47 (1967)
Howland, J.: Puiseux series for resonances at an embedded eigenvalue. Pac. J. Math. 55, 157–176 (1974)
Huet, D.: Phénomènes de perturbation singulière dans les problèmes aux limites. Ann. Inst. Fourier. Grenoble 10, 61–150 (1960)
Hughes, D.S., Eckart, C.: The effect of the motion of the nucleus on the spectra of Li I and Li II. Phys. Rev. 36, 694–698 (1930)
Hunziker, W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)
Hunziker, W.: Distortion analyticity and molecular resonance curves. Ann. Inst. Henri Poincaré Phys. Théor. 45, 339–358 (1986)
Ikebe, T.: Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Ration. Mech. Anal. 5, 1–34 (1960)
Ikebe, T.: Remarks on the orthogonality of eigenfunctions for the Schröinger operator in $$R^n$$ R n . J. Fac. Sci. Univ. Tokyo Sect. I(17), 355–361 (1970)
Ikebe, T., Kato, T.: Application of variational method to the Thomas–Fermi equation. J. Phys. Soc. Jpn. 12, 201–203 (1957)
Ikebe, T., Kato, T.: Uniqueness of the self-adjoint extensions of singular elliptic differential operators. Arch. Ration. Mech. Anal. 9, 77–92 (1962)
Ikebe, T., Uchiyama, J.: On the asymptotic behavior of eigenfunctions of second-order elliptic operators. J. Math. Kyoto Univ. 11, 425–448 (1971)
Ionescu, A.D., Jerison, D.: On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal. 13, 1029–1081 (2003)
Ionescu, A.D., Schlag, W.: Agmon-Kato-Kuroda theorems for a large class of perturbations. Duke Math. J. 131, 397–440 (2006)
Iorio, R.J., O’Carroll, M.: Asymptotic completeness for multi-particle Schroedinger Hamiltonians with weak potentials. Commun. Math. Phys. 27, 137–145 (1972)
Ismagilov, R.: Conditions for the semiboundedness and discreteness of the spectrum for one-dimensional differential equations. Sov. Math. Dokl. 2, 1137–1140 (1961)
Isozaki, H., Kitada, H.: Modified wave operators with time-independent modifiers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32, 77–104 (1985)
Ito, K., Jensen, A.: A complete classification of threshold properties for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 27, 1550002 (2015)
Jacobi, C.: Vorlesungen über Dynamik, Berlin, G. Reiner, 1884. (First Edition: 1866). Based on lectures given in 1842-43 published posthumously
Jäger, W.: Zur Theorie der Schwingungsgleichung mit variablen Koeffizienten in Aussengebieten. Math. Z. 102, 62–88 (1967)
Jakšić, V., Segert, J.: Exponential approach to the adiabatic limit and the Landau–Zener formula. Rev. Math. Phys. 4, 529–574 (1992)
Jakšić, V., Segert, J.: On the Landau–Zener formula for two-level systems. J. Math. Phys. 34, 2807–2820 (1993)
Jansen, S., Ruskai, M.B., Seiler, R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111–102126 (2007)
Jauch, J.M.: Theory of the scattering operator, I, II. Helv. Phys. Acta. 31(127–158), 661–684 (1958)
Jauch, J.M., Zinnes, I.I.: The asymptotic condition for simple scattering systems. Nuovo Cimento 11, 553–567 (1959)
Jecko, T.: A new proof of the analyticity of the electron density. Lett. Math. Phys. 93, 73–83 (2010)
Jensen, A.: Local distortion technique, resonances, and poles of the S-matrix. J. Math. Anal. Appl. 59, 505–513 (1977)
Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions results in $$L^2({\mathbb{R}}^m), m \ge 5$$ L 2 ( R m ) , m ≥ 5 . Duke Math. J. 47, 57–80 (1980)
Jensen, A.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $$L^2({\mathbb{R}}^4)$$ L 2 ( R 4 ) . J. Math. Anal. Appl. 101, 397–422 (1984)
Jensen, A., Kato, T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)
Jensen, A., Nenciu, G.: A unified approach to resolvent expansions at thresholds. Rev. Math. Phys. 13, 717–754 (2001)
Jensen, A., Nenciu, G.: The Fermi golden rule and its form at thresholds in odd dimensions. Commun. Math. Phys. 261, 693–727 (2006)
Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. 121, 463–494 (1985)
Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators. Commun. Math. Phys. 165, 201–205 (1994)
Jörgens, K.: Perturbations of the Dirac operator. In: Everitt, W.N., Sleeman, B.D. (eds.) Proceedings of the Dundee Conference on Differential Equations, pp 87–102. Springer, Berlin (1972)
Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44, 573–604 (1991)
Joye, A., Pfister, C.E.: Exponentially small adiabatic invariant for the Schrödinger equation. Commun. Math. Phys. 140, 15–41 (1991)
Kalf, H.: Self-adjointness for strongly singular potentials with a $$-|x|^2$$ - | x | 2 fall-off at infinity. Math. Z. 133, 249–255 (1973)
Kalf, H.: The quantum mechanical virial theorem and the absence of positive energy bound states of Schrödinger operators. Isr. J. Math. 20, 57–69 (1975)
Kalf, H.: Gauss’s theorem and the self-adjointness of Schrödinger operators. Arkiv. Mat. 18, 19–47 (1980)
Kalf, H., Schmincke, U.-W., Walter, J., Wüst, R.: On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials. In: Everitt, W.N. (ed.) Spectral Theory and Differential Equations. Lecture Notes in Mathematics, vol. 448, pp. 182–226. Springer, Berlin (1975)
Kalf, H., Krishna Kumar, V.: On the absence of positive eigenvalues of Schrödinger operators with long range potentials. Trans. A.M.S. 275, 215–229 (1983)
Kalf, H., Walter, J.: Strongly singular potentials and essential self-adjointness of singular elliptic operators in $$C_0^\infty ({\mathbb{R}}^\nu \setminus \{0\})$$ C 0 ∞ ( R ν \ { 0 } ) . J. Funct. Anal. 10, 114–130 (1972)
Kalf, H., Walter, J.: Note on a paper of Simon on essentially self-adjoint Schrödinger operators with singular potentials. Arch. Ration. Mech. Anal. 52, 258–260 (1973)
Kalton, N.J.: A note on pairs of projections. Bol. Soc. Mat. Mexicana 3, 309–311 (1997)
Karnarski, B.: Generalized Dirac-operators with several singularities. J. Oper. Theory 13, 171–188 (1985)
Kato, T.: On the convergence of the perturbation method, II. Prog. Theor. Phys. 5, 95–101 (1950). (207–212)
Kato, T.: Perturbation theory for linear operators. Sûgaku Math. 2, 201–208 (1950). (in Japanese)
Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. A.M.S. 70, 195–211 (1951)
Kato, T.: On the existence of solutions of the helium wave equation. Trans. A.M.S. 70, 212–218 (1951)
Kato, T.: On the convergence of the perturbation method. J. Fac. Sci. Univ. Tokyo 6, 145–226 (1951)
Kato, T.: On the perturbation theory of closed linear operators. J. Math. Soc. Jpn. 4, 323–337 (1952)
Kato, T.: On some approximate methods concerning the operators $$T^*T$$ T ∗ T . Math. Ann. 126, 253–262 (1953)
Kato, T.: Quadratic forms in Hilbert space and asymptotic perturbation series. Technical Report No. 7, University of California, Berkley (1955)
Kato, T.: Notes on projections and perturbation theory. Technical Report No. 9, University of California, Berkley (1955)
Kato, T.: On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957)
Kato, T.: On finite-dimensional perturbations of self-adjoint operators. J. Math. Soc. Jpn. 9, 239–249 (1957)
Kato, T.: Perturbation of continuous spectra by trace class operators. Proc. Jpn. Acad. 33, 260–264 (1957)
Kato, T.: Perturbation of a scattering operator and its continuous spectrum. Sugaku 9, 75–84 (1957). (in Japanese)
Kato, T.: Growth properties of solutions of the reduced wave equation with a variable coefficient. Commun. Pure Appl. Math. 12, 403–425 (1959)
Kato, T.: Remarks on pseudo-resolvents and infinitesimal generators of semi-groups. Proc. Jpn. Acad. 35, 467–468 (1959)
Kato, T.: Estimation of iterated matrices, with application to the von Neumann condition. Numer. Math. 2, 22–29 (1960)
Kato, T.: A generalization of the Heinz inequality. Proc. Jpn. Acad. Ser. A. Math. Sci. 37, 305–308 (1961)
Kato, T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1966)
Kato, T.: Some results on potential scattering. In: Proceedings of International Conference on Functional Analysis and Related Topics, Tokyo, 1969, pp. 206–215. University of Tokyo Press, Tokyo (1970)
Kato, T.: Scattering theory and perturbation of continuous spectra. Actes du Congrès International des Mathématiciens 1, 135–140 (1971)
Kato, T.: Continuity of the map $$S \mapsto |S|$$ S ↦ | S | for linear operators. Proc. Jpn. Acad. 49, 157–160 (1973)
Kato, T.: A second look at the essential self-adjointness of the Schrödinger operators. In: Enz, C., Mehra, J. (eds.) Physical Reality and Mathematical Description, pp. 193–201. Reidel, Dordrecht (1974)
Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Band 132, Springer, Berlin (1976) (1st ed. 1966 there is also a revised and corrected 1980 printing)
Kato, T.: Boundedness of some pseudo-differential operators. Osaka J. Math. 13, 1–9 (1976)
Kato, T.: Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In: Gohnerg, I., Kac, M. (eds.) Topics in Functional Analysis, Essays dedicated to M. G. Krein. Adv. Math. Suppl. Stud., vol. 3, pp. 185–195 (1978)
Kato, T.: Remarks on Schrödinger operators with vector potentials. Integral Equ. Oper. Theory 1, 103–113 (1978)
Kato, T.: On some Schrödinger operators with a singular complex potential. Ann. Scuola Norm. Super. Pisa Cl. Sci. IV. 5, 105–114 (1978)
Kato, T.: Remarks on the selfadjointness and related problems for differential operators. In: Knowles, I., Lewis, R.: Spectral Theory of Differential Operators (Procedings Conference, Birmingham, USA 1981), pp. 253–266. North-Holland (1981)
Kato, T.: A Short Introduction to Perturbation Theory for Linear Operators. Springer, New York (1982)
Kato, T.: Remarks on holomorphic families of Schrödinger and Dirac operators. In: Knowles, I., Lewis, R. (eds) Differential Equations, Proceedings Conference, Birmingham/Ala. 1983, pp. 341–352. North-Holland, Amsterdam (1984)
Kato, T.: Nonselfadjoint Schrödinger operators with singular first-order coefficients. Proc. R. Soc. Edinb. Sect. A 96, 323–329 (1984)
Kato, T.: $$L^p$$ L p -theory of Schrödinger operators with a singular potential. In: Nagel, R., Schlotterbeck, U., Wolff, M. (eds.) Aspects of Positivity in Functional Analysis, pp. 63–78. North-Holland, Amsterdam (1986)
Kato, T., Fujita, H.: On a theorem for estimating eigenvalues. J. Phys. Soc. Jpn. 13, 215–219 (1958)
Kato, T.: Manuscript (1945). In: Kuroda, S.T. (ed.) Mathematical Theory of Quantum Mechanics-Perturbation of Eigenvalues, Hamiltonians of Atomic and Other Systems (to be published) (in Japanese)
Kato, T., Fujita, H., Nakata, Y., Newman, M.: Estimation of the frequencies of thin elastic plates with free edges. J. Res. Natl. Bur. Stand. 59, 169–186 (1958)
Kato, T., Kuroda, S.T.: A remark on the unitarity property of the scattering operator. Nuovo Cimento 14, 1102–1107 (1959)
Kato, T., Kuroda, S.T.: Theory of simple scattering and eigenfunction expansions. In: Browder, F. (ed.) Functional Analysis and Related Field, pp. 99–131. Springer, Berlin (1970)
Kato, T., Masuda, K.: Trotter’s product formula for nonlinear semigroups generated by the subdifferentials of convex functionals. J. Math. Soc. Jpn. 30, 169–178 (1978)
Kato, T., Yajima, K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1, 481–496 (1989)
Kenig, C.E., Ruiz, A., Sogge, C.D.: Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55, 329–347 (1987)
Khosrovshahi, G.B., Levine, H.A., Payne, L.E.: On the positive spectrum of Schrödinger operators with long range potentials. Trans. Am. Math. Soc. 253, 211–228 (1979)
Killip, R., Simon, B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)
Killip, R., Simon, B.: Sum rules and spectral measures of Schrödinger operators with $$L^2$$ L 2 potentials. Ann. Math. 170, 739–782 (2009)
Kilmister, C.W.: George Frederick James Temple, 2 September 1901-30 January 1992. Biogr. Mems Fell. R. Soc. 40, 384–400 (1994)
Kiselev, A.: Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials. Commun. Math. Phys. 179, 377–400 (1996)
Klaus, M.: Dirac operators with several Coulomb singularities. Helv. Phys. Acta 53, 463–482 (1980)
Klaus, M., Simon, B.: Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case. Ann. Phys. 130, 251–281 (1980)
Klein, M., Seiler, R.: Power-law corrections to the Kubo formula vanish in quantum Hall systems. Commun. Math. Phys. 128, 141–160 (1990)
Kneser, A.: Untersuchung und asymptotische Darstellung der Integrale gewisser linearer Differentialgleichungen bei grossen reellen Werthen des Arguments. J. Reine Angew. Math. 117, 72–103 (1897)
Knopp, K.: Theory of Functions II. Applications and Continuation of the General Theory. Dover Publications, New York (1947)
Knowles, I.: On essential self-adjointness for singular elliptic differential operators. Math. Ann. 227, 155–172 (1977)
Knowles, I.: On essential self-adjointness for Schrödinger operators with wildly oscillating potentials. J. Math. Anal. Appl. 66, 574–585 (1978)
Knowles, I.: On the existence of minimal operators for Schrödinger-type differential expressions. Math. Ann. 233, 221–227 (1978)
Koch, H., Tataru, D.: Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54, 339–360 (2001)
Koch, H., Tataru, D.: Carleman estimates and absence of embedded eigenvalues. Commun. Math. Phys. 267, 419–449 (2006)
Kodaira, K.: On ordinary differential equations of any even order and the corresponding eigenfunction expansions. Am. J. Math. 72, 502–544 (1950)
Konrady, J.: Almost positive perturbations of positive selfadjoint operators. Commun. Math. Phys. 22, 295–299 (1971)
Kotani, S., Ushiroya, N.: One-dimensional Schrödinger operators with random decaying potentials. Commun. Math. Phys. 115, 247–266 (1988)
Krein, M.G.: The theory of self-adjoint extensions of semi–bounded Hermitian transformations and its applications. I. Rec. Math. [Mat. Sb.] N.S. 20, 431–495 (1947)
Krein, M., Krasnoselski, M., Milman, D.: On the defect numbers of operators in Banach spaces and on some geometric questions. Trudy Inst. Mat. Akad. Nauk Ukrain SSR 11, 97–112 (1948)
Kuroda, S.T.: An example of a scattering system in Jauch’s sense. Prog. Theor. Phys. 24, 461–462 (1960)
Kuroda, S.T.: On the existence and the unitarity property of the scattering operator. Nuovo Cimento 12, 431–454 (1959)
Kuroda, S.T.: Perturbation of continuous spectra by unbounded operators, I. J. Math. Soc. Jpn. 11, 246–262 (1959)
Kuroda, S.T.: Perturbation of continuous spectra by unbounded operators, II. J. Math. Soc. Jpn. 12, 243–257 (1960)
Kuroda, S.T.: Scattering theory for differential operators, I, operator theory. J. Math. Soc. Jpn. 25, 75–104 (1973)
Kuroda, S.T.: Scattering theory for differential operators, II, self-adjoint elliptic operators. J. Math. Soc. Jpn. 25, 222–234 (1973)
Kuroda, S.T.: Estimates of Kato–Temple type for n-dimensional spectral measures. Publ. Res. Inst. Math. Sci. 43, 505–520 (2007)
Kurss, H.: A limit-point criterion for nonoscillatory Sturm–Liouville differential operators. Proc. AMS 18, 445–449 (1967)
Kurtz, T.: Extensions of Trotter’s operator semi-group approximation theorems. J. Funct. Anal. 3, 111–132 (1969)
Kurtz, T.: A general theorem on the convergence of operator semigroups. Trans. AMS 148, 23–32 (1970)
Lanczos, C.: Zur Verschiebung der Wasserstoffterme in hohen elektrischen Feldern. Z. Phys. 65, 431–455 (1930)
Lanczos, C.: Zur Intensitätsschwächung der Spektrallinien in hohen Feldern. Z. Phys. 68, 204–232 (1931)
Landau, L., Lifshitz, E.: Quantum Mechanics: Non-relativistic Theory. Addison-Wesley, Reading (1958)
Landgren, J.J., Rejto, P.A.: (part II with M. Klaus) An application of the maximum principle to the study of essential self-adjointness of Dirac operators, I and II. J. Math. Phys. 20, 2204–2211 (1979)
Landgren, J.J., Rejto, P.A.: (part II with M. Klaus) An application of the maximum principle to the study of essential self-adjointness of Dirac operators, I and II. J. Math. Phys. 21, 1210–1217 (1980)
Landgren, J.J., Rejto, P.A.: On a theorem of Jörgens and Chernoff concerning essential selfadjointness of Dirac operators. J. Reine Angew. Math. 322, 1–14 (1981)
Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)
Last, Y., Simon, B.: The essential spectrum of Schrödinger, Jacobi, and CMV operators. J. d’Anal. Math. 98, 183–220 (2006)
Lavine, R.: Absolute continuity of Hamiltonian operators with repulsive potentials. Proc. AMS 22, 55–60 (1969)
Lavine, R.: Commutators and scattering theory, I. Repulsive interactions. Commun. Math. Phys. 20, 301–323 (1971)
Lavine, R.: Commutators and scattering theory, II. A class of onebody problems. Indiana Univ. Math. J. 21, 643–656 (1972)
Lavine, R.: Completeness of the wave operators in the repulsive N-body problem. J. Math. Phys. 14, 376–379 (1973)
Lavine, R.: Absolute continuity of positive spectrum for Schrödinger operators with long range potentials. J. Funct. Anal. 12, 30–54 (1973)
Lax, P.D.: On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations. Commun. Pure Appl. Math. 8, 615–633 (1955)
Lax, P., Milgram, A.: Parabolic equations. In: Bers, L., Bochner, S., John, F. (eds.) Contributions to the Theory of Partial Differential Equations, vol. 33. Annals of Mathematics Studies. Princeton University Press, Princeton (1954)
Leinfelder, H., Simader, C.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176, 1–19 (1981)
Levinson, N.: Criteria for the limit-point case for second order linear differential operators. Časopis Pěst. Mat. Fys. 74, 17–20 (1949)
Levitan, B.M., Sargsjan, I.S.: Introduction to Spectral Theory: Selfadjoint Ordinary Differential Operators. Translated from the Russian by Amiel Feinstein, Translations of Mathematical Monographs. American Mathematical Society, Providence (1975)
Lewin, M.: Mean-field limit of Bose systems: rigorous results. Preprint arXiv:1510.04407
Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)
Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118, 349–374 (1983)
Lieb, E.H.: Bound on the maximum negative ionization or atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)
Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)
Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Semin. vol. 34. Birkhäuser, Basel (2005)
Lieb, E.H., Sigal, I.M., Simon, B., Thirring, W.: Approximate neutrality of large-Z ions. Commun. Math. Phys. 116, 635–644 (1988)
Lions, J.: Équations Differentielles Operatianelles et Problèmes aux Limites. Springer, Berlin (1961)
Lippmann, B.A., Schwinger, J.: Variational principles for scattering processes, I. Phys. Rev. 79, 469–480 (1950)
Ljance, V.É.: Some properties of idempotent operators. Teor. Prikl. Mat. 1, 16–22 (1958/59)
Loeffel, J.J., Martin, A.: Propriétés analytiques des niveaux de l’oscillateur anharmonique et convergence des approximants de Padé. Cargèse Lectures in Physics, vol. 5, pp. 415–429. Gordon and Breach, New York (1972)
Loeffel, J.J., Martin, A., Simon, B., Wightman, A.: Padé approximants and the anharmonic oscillator. Phys. Lett. 30B, 656–658 (1969)
Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean $$\varphi _3^4$$ φ 3 4 theory. Commun. Math. Phys. 56, 237–276 (1977)
Magnen, J., Sénéor, R.: Yukawa quantum field theory in three dimensions (Y3). In: Third International Conference on Collective Phenomena (Moscow, 1978), pp. 13-43. The New York Academy of Sciences, New York (1980)
Mǎntoiu, M.: $$C^*$$ C ∗ -algebras, dynamical systems at infinity and the essential spectrum of generalized Schrödinger operators. J. Reine Angew. Math. 550, 211–229 (2002)
Martinez, A., Ramond, T., Sjöstrand, J.: Resonances for nonanalytic potentials. Anal. PDE 2, 29–60 (2009)
McLeod, J.: Spectral concentration I, The one-dimensional Schrödinger operator. In: Wilcox, C.H. (ed.) Perturbation Theory and Its Applications in Quantum Mechanics, pp. 119–127. Wiley, New York (1966)
Milatovic, O.: Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry. Electron. J. Differ. Equ. 64, 8 (2003)
Møller, C.: General properties of the characteristic matrix in the theory of elementary particles, I. Danske. Vid. Selsk. Mat.-Fys. Medd. 23, 1–48 (1945)
Morgan, J.: Schrödinger operators whose potentials have separated singularities. J. Oper. Theory 1, 109–115 (1979)
Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys. 78, 391–408 (1981)
Müller, C.: On the behavior of the solutions of the differential equation $$\Delta U=F(x, U)$$ Δ U = F ( x , U ) in the neighborhood of a point. Commun. Pure Appl. Math. 7, 505–515 (1954)
Murata, M.: Asymptotic expansions in time for solutions of Schrödinger-type equations. J. Funct. Anal. 49, 10–56 (1982)
Naboko, S.N.: On the dense point spectrum of Schrödinger and Dirac operators, Teoret. Mat. Fiz. 68, 18–28 (1986) (Eng. Trans.: Theoret. and Math. Phys. 68, 646–653 (1986))
Nagumo, M.: Einige analytische Untersuchungen in linearen, metrischen Ringen. Jpn. J. Math. 13, 61–80 (1936)
Nagy, B.S.: Hungarian version of [454]. Matematikai és Természettudományi Értesitő 61, 755–774 (1942)
Nagy, B.S.: Acta Sci. Math. Szeged 14, 125–137 (1951)
Nakamura, S.: Shape resonances for distortion analytic Schrödinger operators. Commun. PDE 14, 1385–1419 (1989)
Nakamura, S.: Distortion analyticity for two-body Schrödinger operators. Ann. Inst. Henri Poincaré Phys. Théor. 53, 149–157 (1990)
Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)
Nelson, E.: A quartic interaction in two dimensions. In: Goodman, R., Segal, I. (eds.) Mathematical Theory of Elementary Particles, pp. 69–73. MIT Press, Cambridge (1966)
Nelson, E.: Time-ordered operator products of sharp-time quadratic forms. J. Funct. Anal. 11, 211–219 (1972)
Nenciu, G.: Distinguished self-adjoint extension for Dirac operator with potential dominated by multicenter Coulomb potentials. Helv. Phys. Acta. 50, 1–3 (1977)
Nenciu, G.: Linear adiabatic theory: exponential estimates and applications. In: de Monvel, A.B., Marchenko, V. (eds.) Algebraic and Geometric Methods in Mathematical Physics. Kluwer, Dordrecht (1996)
Neveu, J.: Theorie des semi-groupes de Markov. Univ. Calif. Publ. Stat. 2, 319–394 (1958)
Nilsson, N.: Essential self-adjointness and the spectral resolution of Hamiltonian operators. Kungl. Fysiogr. Sällsk. i Lund Förh. 29, 1–19 (1959)
Odeh, F.: Note on differential operators with a purely continuous spectrum. Proc. AMS 16, 363–366 (1965)
Oleǐnik, I.M.: On a connection between classical and quantum-mechanical completeness of the potential at infinity on a complete Riemannian manifold. Mat. Zametki 55, 65–73 (1994) (Eng. Trans.: Math. Notes 55, 380–386 (1994))
Oppenheimer, J.R.: Three notes on the quantum theory of aperiodic effects. Phys. Rev. 31, 66–81 (1928)
Ouellette, J.: Three’s company, two’s a crowd: meet the Efimov effect. Scientific American Blogs (2014). https://blogs.scientificamerican.com/cocktail-party-physics/three-8217-s-company-two-8217-s-a-crowd-meet-the-efimov-effect/
Ovchinnikov, Y.N., Sigal, I.M.: Number of bound states of three body systems and Efimov’s effect. Ann. Phys. 123, 274–295 (1979)
Padé, H.: Sur la réprésentation approchée d’une fonction par des fractions rationelles. Ann. Sci. Ecole Normale Sup. 9, 1–93 (1892)
Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A44, 247–262 (1956)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
Pearson, D.B.: Singular continuous measures in scattering theory. Commun. Math. Phys. 60, 13–36 (1978)
Pekeris, C.L.: $$1^1$$ 1 1 S, $$2^1$$ 2 1 S and $$2^3$$ 2 3 S states of H $$^-$$ - and He. Phys. Rev. 126, 1470–1476 (1962)
Perry, P.: Scattering Theory by the Enss Method. Harwood Academic, London (1983)
Perry, P., Sigal, I.M., Simon, B.: Spectral analysis of N-body Schrödinger operators. Ann. Math. 114, 519–567 (1981)
Picard, E.: Sur la détermination des intégrales de certaines équations aux dérivées partielles du second ordre par leurs valeurs le long d’un contours fermé. J. de l’Ecole Pol. 60, 89–105 (1890)
Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)
Povzner, A.V.: On the expansion of arbitrary functions in terms of the eigenfunctions of the operator $$-\Delta u + cu$$ - Δ u + c u . Mat. Sb. 32, 109–156 (1953) (Eng. Trans.: A.M.S Trans., 2nd Series, 60 (1967), 1-49)
Povzner, A.V.: On expansions in functions which are solutions of a scattering problem. Dokl. Akad. Nauk SSSR 104, 360–363 (1955)
Putnam, C.R.: Commutation Properties of Hilbert Space Operators and Related Topics. Springer, New York (1967)
Rabinovich, V.S.: Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein–Gordon, and Dirac operators. Russ. J. Math. Phys. 12, 62–80 (2005)
Rauch, J.: Local decay of scattering solutions to Schrödinger’s equation. Commun. Math. Phys. 61, 149–168 (1978)
Rauch, J.: Perturbation theory for eigenvalues and resonances of Schrödinger Hamiltonians. J. Funct. Anal. 35, 304–315 (1980)
Rauch, J., Reed, M.: Two examples illustrating the differences between classical and quantum mechanics. Commun. Math. Phys. 29, 105–111 (1973)
Rayleigh, L.: The Theory of Sound, vol. I. MacMillan, London (1877)
Rayleigh, L.: The Theory of Sound, 2nd edn. Dover Publications, New York (1945)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I: Functional Analysis. Academic Press, New York (1972)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, III: Scattering Theory. Academic Press, New York (1979)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV: Analysis of Operators. Academic Press, New York (1978)
Reinhardt, W.: Method of complex coordinates: application to the Stark effect in hydrogen. Int. J. Quant. Chem. 10, 359–367 (1976)
Rejto, P.: Second order concentration near the binding energy of the helium Schrödinger operator. Isr. J. Math. 6, 311–337 (1969)
Rejto, P.: Spectral concentration for the helium Schrödinger operator. Helv. Phys. Acta 43, 652–667 (1970)
Rejto, P.: Some potential perturbations of the Laplacian. Helv. Phys. Acta 44, 708–736 (1971)
Rellich, F.: Die zulässigen Randbedingungen bei den singulären Eigenwertproblemen der mathematischen Physik. (Gewöhnliche Differentialgleichungen zweiter Ordnung.). Math. Zeit. 49, 702–723 (1944)
Rellich, F.: Halbbeschränkte Differentialoperatoren höherer Ordnung. In: Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 243–250. North-Holland Publishing Co., Amsterdam (1956)
Rellich, F.: Perturbation Theory of Eigenvalue Problems. Gordon and Breach, New York (1969)
Remling, C.: The absolutely continuous spectrum of one-dimensional Schrödinger operators with decaying potentials. Commun. Math. Phys. 193, 151–170 (1998)
Renouard, P.: Analyticité et sommabilité “de Borel” des fonctions de Schwinger du modèle de Yukawa en dimension $$d=2$$ d = 2 , I. Ann. Inst. Henri Poincar Sect. A27, 237–277 (1977)
Renouard, P.: Analyticité et sommabilité “de Borel” des fonctions de Schwinger du modèle de Yukawa en dimension $$d=2$$ d = 2 . II. Ann. Inst. Henri. Poincar Sect. A31, 235–318 (1979)
Riesz, F.: Les systèmes d’équations à une infinité d’inconnues. Gauthier-Villars, Paris (1913)
Riesz, F.: Über die linearen Transformationen des komplexen Hilbertschen Raumes. Acta Sci. Math. Szeged 5, 23–54 (1930)
Robinson, D.W.: The Thermodynamic Pressure in Quantum Statistical Mechanics. Lecture Notes in Physics, vol. 9. Springer, Berlin (1971)
Robinson, D.W.: Hardy inequalities, Rellich inequalities and local Dirichlet forms. Preprint arXiv:1701.05629 [math.AP]
Rohde, H.-W.: Kriterien zur Selbstadjungiertheit elliptischer Differentialoperatoren I. Arch. Ration. Mech. Anal. 34, 188–201 (1969)
Rohde, H.-W.: Kriterien zur Selbstadjungiertheit elliptischer Differentialoperatoren II. Arch. Ration. Mech. Anal. 34, 202–217 (1969)
Rosen, L.: A $$\lambda \varphi ^{2n}$$ λ φ 2 n field theory without cutoffs. Commun. Math. Phys. 16, 157–183 (1970)
Rosenblum, M.: Perturbation of the continuous spectrum and unitary equivalence. Pac. J. Math. 7, 997–1010 (1957)
Rougerie, N.: De Finetti theorems, mean-field limits and Bose–Einstein condensation. Preprint arXiv:1506.05263
Roze, S.N.: The spectrum of a second order elliptic operator. Mat. Sb. 80, 195–209 (1969)
Ruskai, M.B.: Absence of discrete spectrum in highly negative ions, I. Commun. Math. Phys. 82, 457–469 (1982)
Ruskai, M.B.: Absence of discrete spectrum in highly negative ions, II. Commun. Math. Phys. 85, 325–327 (1982)
Sahbani, J.: The conjugate operator method for locally regular Hamiltonians. J. Oper. Theory 38, 297–322 (1997)
Saito, Y.: The principle of limiting absorption for second-order differential equations with operator-valued coefficients. Publ. Res. Inst. Math. Sci. 7, 581–619 (1972)
Schechter, M.: Spectra of Partial Differential Operators. North Holland, Amsterdam (1971)
Schechter, M.: Scattering theory for elliptic operators of arbitrary order. Comment. Math. Helv. 49, 84–113 (1974)
Schmidt, G.: Spectral and scattering theory for Maxwell’s equations in an exterior domain. Arch. Ration. Mech. Anal. 28, 284–322 (1967/1968)
Schmincke, U.-W.: Essential selfadjointness of a Schrödinger operator with strongly singular potential. Math. Z. 124, 47–50 (1972)
Schmincke, U.-W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z. 126, 71–81 (1972)
Schmincke, U.-W.: Distinguished selfadjoint extensions of Dirac operators. Math. Z. 129, 335–349 (1972)
Schonbek, T., Zhou, Z.: Decay for solutions to the Schrödinger equations. Commun. P.D.E. 22, 723–747 (1997)
Schrödinger, E.: Quantisierung als Eigenwertproblem, IV, Störungstheorie mit Anwendung auf den Starkeffekt der Balmerlinien. Ann. Phys. 80, 437–490 (1926)
Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, I, II. J. Reine Angew. Math. 147, 205–232 (1917), 148, 122–145 (1918) (Eng. trans.: I. Schur Methods in Operator Theory and Signal Processing (edited by I. Gohberg), pp. 31–59, 66-88, Operator Theory: Advances and Applications, 18, Birkhäuser, Basel (1986))
Schwarzschild, K.: Zur Quantenhypothese. Sitzungsber. der kön. preuss. Akad. der Wiss. 25, 548–568 (1916)
Sears, D.: On the solutions of a linear second order differential equation which are of integrable square. J. Lond. Math. Soc. 24, 207–215 (1949)
Segal, I.E.: Construction of nonlinear local quantum processes, II. Invent. Math. 14, 211–241 (1971)
Seiler, E., Simon, B.: Bounds in the Yukawa quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys 45, 99–114 (1975)
Seiringer, R.: Hot topics in cold gases: a mathematical physics perspective. Jpn. J. Math. 8, 185–232 (2013)
Shenk, N.A.: Eigenfunction expansions and scattering theory for the wave equation in an exterior region. Arch. Ration. Mech. Anal. 21, 120–150 (1966)
Shubin, M.: Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. J. Funct. Anal. 186, 92–116 (2001)
Sigal, I.M.: Geometric methods in the quantum many-body problem: nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)
Sigal, I.M.: Mathematical theory of single channel systems. Analyticity of scattering matrix. Trans. AMS. 270, 409–437 (1982)
Sigal, I.M.: Complex transformation method and resonances in one-body quantum systems. Ann. Inst. Henri Poincaré Phys. Théor. 41, 103–114 (1984)
Sigal, I.M.: Analytic properties of the scattering matrix of many particle systems. Integral Equ. Oper. Theory 9, 134–153 (1986)
Sigal, I.M.: Sharp exponential bounds on resonances states and width of resonances. Adv. Appl. Math. 9, 127–166 (1988)
Sigal, I.M.: Geometric theory of Stark resonances in multielectron systems. Commun. Math. Phys. 119, 287–314 (1988)
Sigal, I.M.: Life-time of Stark resonances. In: Mathematical Quantum Field Theory and Related Topics (Montreal, PQ, 1987), 233–246, CMS Conference Proceedings, vol. 9. American Mathematical Society, Providence (1988)
Sigal, I.M.: Stark effect in multielectron systems: nonexistence of bound states. Commun. Math. Phys. 122, 1–22 (1989)
Sigal, I.M.: Renormalization group and problem of radiation. In: Fröhlich, J., et al. (eds.) Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School: Volume 95, August 2010, pp. 633–671. Oxford University Press, Oxford (2012)
Sigal, I.M., Soffer, A.: The N-particle scattering problem: asymptotic completeness for short-range systems. Ann. Math. 126, 35–108 (1987)
Sigal, I.M., Soffer, A.: Asymptotic completeness of N-particle long-range scattering. JAMS 7, 307–334 (1994)
Sigalov, A.G., Sigal, I.M.: Description of the spectrum of the energy operator of quantum mechanical systems that is invariant with respect to permutations of identical particles. Theor. Math. Phys. 5, 990–1005 (1970)
Simon, B.: On positive eigenvalues of one-body Schrödinger operators. Commun. Pure Appl. Math. 22, 531–538 (1969)
Simon, B.: Coupling constant analyticity for the anharmonic oscillator. Ann. Phys. 58, 76–136 (1970)
Simon, B.: On the infinitude or finiteness of the number of bound states of an N-body quantum system, I. Helv. Phys. Acta 43, 607–630 (1970)
Simon, B.: Quantum Mechanics for Hamiltonians Defined by Quadratic Forms. Princeton Series in Physics. Princeton University Press, Princeton (1971)
Simon, B.: Determination of eigenvalues by divergent perturbation series. Adv. Math. 7, 240–253 (1971)
Simon, B.: Summability methods, the strong asymptotic condition, and unitarity in quantum field theory. Phys. Rev. Lett. 28, 1145–1146 (1972)
Simon, B.: Quadratic form techniques and the Balslev–Combes theorem. Commun. Math. Phys. 27, 1–9 (1972)
Simon, B.: Resonances in N-body quantum systems with dilation analytic potentials and the foundations of time-dependent perturbation theory. Ann. Math. 97, 247–274 (1973)
Simon, B.: Essential self-adjointness of Schrödinger operators with positive potentials. Math. Ann. 201, 211–220 (1973)
Simon, B.: Essential self-adjointness of Schrödinger operators with singular potentials. Arch. Ration. Mech. Anal. 52, 44–48 (1973)
Simon, B.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 131, 361–370 (1973)
Simon, B.: The $$P(\Phi )_2$$ P ( Φ ) 2 Euclidean (Quantum) Field Theory. Princeton Series in Physics. Princeton University Press, Princeton (1974)
Simon, B.: Quantum dynamics: from automorphism to Hamiltonian. In: Lieb, E.H., Simon, B., Wightman, A.S. (eds.) Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, pp. 327–349. Princeton University Press, Princeton (1976)
Simon, B.: The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97, 279–288 (1976)
Simon, B.: An abstract Kato’s inequality for generators of positivity preserving semigroups. Indiana Univ. Math. J. 26, 1067–1073 (1977)
Simon, B.: Geometric methods in multiparticle quantum systems. Commun. Math. Phys. 55, 259–274 (1977)
Simon, B.: Scattering theory and quadratic forms: on a theorem of Schechter. Commun. Math. Phys. 53, 151–153 (1977)
Simon, B.: On the absorption of eigenvalues by continuous spectrum in regular perturbation problems. J. Funct. Anal. 25, 338–344 (1977)
Simon, B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28, 377–385 (1978)
Simon, B.: Lower semicontinuity of positive quadratic forms. Proc. R. Soc. Edinb. Sect. A79, 267–273 (1977/78)
Simon, B.: Resonances and complex scaling: a rigorous overview. Int. J. Quant. Chem. 14, 529–542 (1978)
Simon, B.: Phase space analysis of simple scattering systems: extensions of some work of Enss. Duke Math. J. 46(119–168), 121 (1979)
Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence, RI (2005)
Simon, B.: Functional Integration and Quantum Physics, 1st edn. Academic Press, New York (1979)
Simon, B.: Trace Ideals and Their Applications, 2nd edn. American Mathematical Society, Providence, RI (2005)
Simon, B.: Trace Ideals and Their Applications, 1st edn. Cambridge University Press, Cambridge (1979)
Simon, B.: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. 71A, 211–214 (1979)
Simon, B.: Maximal and minimal Schrödinger forms. J. Oper. Theory 1, 37–47 (1979)
Simon, B.: Brownian motion, $$L^p$$ L p properties of Schrödinger operators and the localization of binding. J. Funct. Anal. 35, 215–229 (1980)
Simon, B.: Large time behavior of the $$L^p$$ L p norm of Schrödinger semigroups. J. Funct. Anal. 40, 66–83 (1981)
Simon, B.: Some Jacobi matrices with decaying potential and dense point spectrum. Commun. Math. Phys. 87, 253–258 (1982)
Simon B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions, Ann. Inst. Helv. Poincaré A38, 295–308 (1983) (Errata: Ann. Inst. H. Poincaré Phys. Théor. 40, 224 (1984))
Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983)
Simon, B.: Semiclassical analysis of low lying eigenvalues, II. Tunnel. Ann. Math. 120, 89–118 (1984)
Simon, B.: Operators with singular continuous spectrum: I. General operators. Ann. Math. 141, 131–145 (1995)
Simon, B.: Operators with singular continuous spectrum, VI. Graph Laplacians and Laplace–Beltrami operators. Proc. AMS 124, 1177–1182 (1996)
Simon, B.: Operators with singular continuous spectrum, VII. Examples with borderline time decay. Commun. Math. Phys. 176, 713–722 (1996)
Simon, B.: Schrödinger operators in the twenty-first century. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000, pp. 283–288. Imperial College Press, London (2001)
Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for $$L^2$$ L 2 Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton (2011)
Simon, B.: A Comprehensive Course in Analysis, Part 1: Real Analysis. American Mathematical Society, Providence (2015)
Simon, B.: A Comprehensive Course in Analysis, Part 2A: Basic Complex Analysis. American Mathematical Society, Providence (2015)
Simon, B.: A Comprehensive Course in Analysis, Part 2B: Advanced Complex Analysis. American Mathematical Society, Providence (2015)
Simon, B.: A Comprehensive Course in Analysis, Part 3: Harmonic Analysis. American Mathematical Society, Providence (2015)
Simon, B.: A Comprehensive Course in Analysis, Part 4: Operator Theory. American Mathematical Society, Providence (2015)
Simon, B., Høegh-Krohn, R.: Hypercontractive semi-groups and two dimensional self-coupled Bose fields. J. Funct. Anal. 9, 121–180 (1972)
Sjöstrand, J.: Lectures on resonances. Unpublished. http://sjostrand.perso.math.cnrs.fr/Coursgbg.pdf
Skibsted, E., Wang, X.P.: 2-Body threshold spectral analysis, the critical case. J. Funct. Anal. 260, 1766–1794 (2011)
Sobolev, A.V.: The Efimov effect. Discrete spectrum asymptotics. Commun. Math. Phys. 156, 101–126 (1993)
Sova, M.: Problème de Cauchy pour équations hyperboliques opérationelles a coefficients constants non-bornés. Ann. Scuola Norm. Sup. Pisa 22, 67–100 (1968)
Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Four. 15, 189–258 (1965)
Stein, E.M., Weiss, G.: Fractional integrals in n-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)
Stetkaer-Hansen, H.: A generalization of a theorem of Wienholtz concerning essential selfadjointness of singular elliptic operators. Math. Scand. 19, 108–112 (1966)
Stolz, G., Simon, B.: Operators with singular continuous spectrum, V. Sparse potentials. Proc. Am. Math. Soc. 124, 2073–2080 (1996)
Stone, M.: Linear Transformations in Hilbert Space. American Mathematical Society, Providence (1990) (Reprint of the 1932 Original. American Mathematical Society Colloquium Publications, vol. 15)
Stummel, F.: Singuläre elliptische Differential-operatoren in Hilbertschen Räumen. Math. Ann. 132, 150–176 (1956)
Szyld, D.: The many proofs of an identity on the norm of oblique projections. Numer. Algorithms 42, 309–323 (2006)
Tamura, H.: The Efimov effect of three-body Schrödinger operators. J. Funct. Anal. 95, 433–459 (1991)
Tamura, H.: The Efimov effect of three-body Schrödinger operators: asymptotics for the number of negative eigenvalues. Nagoya Math. J. 130, 55–83 (1993)
Temple, G.: The theory of Rayleigh’s principle as applied to continuous systems. Proc. R. Soc. A 119, 276–293 (1928)
Temple, G.: The computation of characteristic numbers and characteristic functions. Proc. Lond. Math. Soc. 2(29), 257–280 (1928)
Temple, G.: The accuracy of Rayleigh’s method of calculating the natural frequencies of vibrating systems. Proc. R. Soc. Lond. Ser. A. 211, 204–224 (1952)
Teufel, S.: A note on the adiabatic theorem without gap condition. Lett. Math. Phys. 58, 261–266 (2001)
Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, vol. 1821. Springer, Berlin (2003)
Thirring, W.: Quantum Mathematical Physics. Atoms, Molecules and Large Systems, 2nd edn (Translated from the 1979 and 1980 German Originals by Evans M. Harrell II). Springer, Berlin (2002) (combines vols. 3 and 4 of Thirring’s Lehrbuch der mathematischen Physik)
Thoe, D.W.: Spectral theory for the wave equation with a potential term. Arch. Ration. Mech. Anal. 22, 364–406 (1966)
Thoe, D.W.: Eigenfunction expansions associated with Schroedinger operators in $$R_n, n4$$ R n , n 4 . Arch. Ration. Mech. Anal. 26, 335–356 (1967)
Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)
Titchmarsh, E.: Some theorems on perturbation theory, V. Proc. R. Soc. J. d’Anal. Math. 4, 187–208 (1954–1956)
Titchmarsh, E.: Eigenfunction expansions associated with partial differential equations, V. Proc. Lond. Math Soc. 5, 1–21 (1955)
Titchmarsh, E.: Eigenfunction Expansions Associated with Second Order Differential Equations, Part I, 2nd edn. Oxford University Press, Oxford (1962) (First edition: 1946)
Titchmarsh, E.: Eigenfunction Expansions Associated with Second Order Differential Equations, Part II. Oxford University Press, Oxford (1958)
Trudinger, N.: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 27, 255–308 (1973)
Uchiyama, J.: Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particle system. Publ. Res. Inst. Math. Sci. 5, 51–63 (1969)
Vakulenko, A.F.: A variant of commutator estimates in spectral theory. Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsiĭ 19, 29–36 (1987) (Translated in J. Soviet Math. 49, 1136–1139 (1990))
Veselić, K.: On spectral concentration for some classes of selfadjoint operators. Glasnik Mat. Ser. II I(4), 213–229 (1969)
van Winter, C.: Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk 2, 8 (1964)
von Neumann, J.: Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. Math. Ann. 102, 49–131 (1930)
von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton, NJ (1996) (German original: Mathematische Grundlagen der Quantenmechanik, 1932 (first English translation (1955))
von Neumann, J.: Charakterisierung des Spektrums eines Integraloperators. Actualités Sci. Ind. 229, 3–20 (1935)
von Neumann, J., Wigner, E.: Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (1929)
Vugal’ter, S.A., Zhislin, G.M.: Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations). Teoret. Mat. Fiz. 32, 70–87 (1977) (Eng. Trans.: Theo. and Math. Phys. 32 (1977), 602–614 (1978))
Wang, X.P., Wang, Y.: Existence of two-cluster threshold resonances and the N-body Efimov effect. J. Math. Phys. 46, 112106 (2005)
Weidmann, J.: The virial theorem and its application to the spectral theory of Schrödinger operators. Bull. Am. Math. Soc. 73, 452–456 (1967)
Weidmann, J.: Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen. Math. Z. 119, 349–373 (1971)
Weisskopf, V., Wigner, E.P.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Z. Phys. 63, 54–73 (1930)
Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen I, Gött. Nachr., 37–63 (1909)
Weyl, H.: Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen II, Gött. Nachr., 442–467 (1910)
Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Palermo Rend. 27, 373–392, 402 (1909)
Weyl, H.: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann. 68, 220–269 (1910)
Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications, Inc., New York (1950) (German original: Gruppentheorie und Quantenmechanik, 1928)
Wheeler, J.A.: On the mathematical description of light nuclei by the method of resonating group structure. Phys. Rev. 52, 1107–1122 (1937)
Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus. Math. Ann. 135, 50–80 (1958)
Wilcox, C.H.: Wave operators and asymptotic solutions of wave propagation problems of classical physics. Arch. Ration. Mech. Anal. 22, 37–78 (1966)
Wintner, A.: On the normalization of characteristic differentials in continuous spectra. Phys. Rev. 72, 516–517 (1947)
Wolchover, N.: Physicists prove surprising rule of threes. Quanta Magazine (May 27, 2014). https://www.quantamagazine.org/in-efimov-state-physicists-find-a-surprising-rule-of-threes-20140527
Wüst, R.: Generalizations of Rellich’s theorem on perturbations of (essentially) self-adjoint operators. Math. Z. 119, 276–280 (1971)
Wüst, R.: A convergence theorem for self-adjoint operators applicable to Dirac operators with cut-off potentials. Math. Z. 131, 339–349 (1973)
Wüst, R.: Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials. Math. Z. 141, 93–98 (1975)
Wang, Y., Du, H., Dou, Y.: On the index of Fredholm pairs of idempotents. Acta Math. Sin. (Engl. Ser.) 25, 679–686 (2009)
Yafaev, D.R.: On the theory of the discrete spectrum of the three-particle Schrödinger operator. Mat. Sb. 94, 567–593 (1974) (Eng. Trans.: Math. USSR-Sb. 23, 535–559 (1974))
Yafaev, D.R.: The discrete spectrum of the three-particle Schrödinger operator. Dokl. Akad. Nauk SSSR 206, 68–70 (1972)
Yafaev, D.R.: The point spectrum in the quantum mechanical problem of many particles. Izv. Akad. Nauk SSSR Ser. Mat. 40, 908–948 (1976) (Eng. trans.: Math. USSR-Izv. 10, 861–896 (1976))
Yafaev, D.R.: The virtual level of the Schrödinger equation. In: Mathematical Questions in the Theory of Wave Propagation, vol. 7. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) vol. 51, pp. 203–216, 220 (1975) (Eng. Trans.: J. Sov. Math. 11, 501–510 (1979))
Yafaev, D.R.: Mathematical Scattering Theory, General Theory. American Mathematical Society, Providence, RI (1992)
Yafaev, D.R.: Radiation conditions and scattering theory for N-particle Hamiltonians. Commun. Math. Phys. 154, 523–554 (1993)
Yafaev, D.: The scattering amplitude for the Schrödinger equation with a long-range potential. Commun. Math. Phys. 191, 183–218 (1998)
Yafaev, D.: Scattering Theory: Some Old and New Problems. Lecture Notes in Mathematics, vol. 1735. Springer, Berlin (2000)
Yafaev, D.R.: Mathematical Scattering Theory, Analytic theory. American Mathematical Society, Providence, RI (2010)
Yajima, K.: The $$W^{k,p}$$ W k , p -continuity of wave operators for Schrödinger operators, II. Positive potentials in even dimensions $$m \ge 4$$ m ≥ 4 . In: Ikawa, M. (ed.) Spectral and Scattering Theory (Sanda, 1992), Lecture Notes in Pure and Applied Mathematics, vol. 161, pp. 287–300. Dekker, New York (1994)
Yajima, K.: The $$W^{k, p}$$ W k , p -continuity of wave operators for Schrödinger operators. J. Math. Soc. Jpn. 47, 551–581 (1995)
Yajima, K.: The $$W^{k, p}$$ W k , p -continuity of wave operators for Schrödinger operators, III. Even-dimensional cases $$m \ge 4$$ m ≥ 4 . J. Math. Sci. Univ. Tokyo 2, 311–346 (1995)
Yajima, K.: $$L^p$$ L p -boundedness of wave operators for two-imensional Schrödinger operators. Commun. Math. Phys. 208, 125–152 (1999)
Yajima, K.: Remarks on $$L^p$$ L p -boundedness of wave operators for Schrödinger operators with threshold singularities. Doc. Math. 21, 391–443 (2016)
Zelditch, S.: Park City lectures on eigenfuntions: Geometric analysis. In: Bray, H.L., et al. (eds.) Expanded lecture notes from the Graduate Summer School held at the Park City Mathematical Institute (PCMI), Park City, UT, July 2013, pp. 111–113. American Mathematical Society, Providence, RI (2016)
Zheng, Q., Yao, X.: Higher-order Kato class potentials for Schrödinger operators. Bull. Lond. Math. Soc. 41, 293–301 (2009)
Zhislin, G.M.: A study of the spectrum of the Schrödinger operator for a system of several particles. Trudy Moskov. Mat. Obšč. 9, 81–120 (1960)
Zhislin, G.M.: On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions. Theor. Math. Phys. 7, 571–578 (1971)
Zworski, M.: Distribution of poles for scattering on the real line. J. Funct. Anal. 73, 277–296 (1987)