Torsion Type Invariants of Singularities
Tóm tắt
Inspired by the LG/CY correspondence, we study the local index theory of the Schrödinger operator associated to a singularity defined on
$\mathbb {C}^{n}$
by a quasi-homogeneous polynomial f. Under some mild assumption to f, we show that the small time heat kernel expansion of the corresponding Schrödinger operator exists and is a series of fractional powers of time t. Then we prove a local index formula which expresses the Milnor number of f by a Gaussian type integration. The heat kernel expansion provides the spectral invariants of f. Furthermore, we can define the torsion type invariants associated to a homogeneous singularity. The spectral invariants provide another way to classify the singularity.
Tài liệu tham khảo
Arnold, V., Gusein-Zade, A., Varchenko, A.: Singularities of Differentiable Maps, Vol. I, II. Monographs in Mathematics. Birkhäuser, Boston (1985)
Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. 1998, 201–215 (1998)
Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Der Mathematischen Wissenschaften, vol. 298. Springer-Verlag, Berlin, Heidelberg (2004)
Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories (with an appendix by S. Katz). Nucl. Phys. B 405, 279–304 (1993)
Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311–427 (1994)
Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles I. Bott-chern forms and analytic torsion. Commmun. Math. Phys. 115, 49–78 (1988)
Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles II. Direct images and Bott-Chern forms. Commmun. Math. Phys. 115, 79–126 (1988)
Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles III. Quillen metrics on holomorphic determinants. Commmun. Math. Phys. 115, 301–351 (1988)
Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. Astérisque 205, 1–223 (1992); Métriques de Reidemeister et métriques de Ray Singer sur le determinant de la cohomalogie d’un fibre plat: une extension d’un resultat de Cheeger et Müller, C. R. Acad. Sci. Paris Sér. I 313, 775–782 (1991)
Burghelea, D., Kappeler, T., McDonald, P., Friedlander, L.: Analytic and Reidemeister torsion for representations in finite type Hilbert modules. Geom. Funct. Anal. 6, 751–859 (1996)
Cecotti, S.: Geometry of N = 2 Landau-Ginzburg families. Nucl. Phys. B 355, 755–775 (1991)
Cecotti, S.: N = 2 Landau-Ginzburg vs. Calabi-yau σ-models: Non-perturbative aspects. Int. J. Mod. Phys. A 6, 1749–1813 (1991)
Cecotti, S., Girardello, L., Pasquinucci, A.: Non-perturbative aspects and exact results for the N = 2 Landau-Ginzburg models. Nucl. Phys. B 328, 701–722 (1989)
Cecotti, S., Girardello, L., Pasquinucci, A.: Singularity-theory and N = 2 supersymmetry. Int. J. Mod. Phys. A 6, 2427–2496 (1991)
Cecotti, S., Vafa, C.: Topological—anti-topological fusion. Nucl. Phys. B 367, 359–461 (1991)
Chavel, I.: Eigenvalues in Riemannian Geometry; with a Chapter by Burton Randol; with Appendix by Jozef Dodziuk Pure and Applied Mathematics, vol. 115. Academic Press, Orlando, FL (1984)
Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. 109, 259–321 (1979)
Choido, A., Ruan, Y.: A global mirror symmetry framework for the Landau-Ginzburg/Calabi-Yau correspondence. Ann. Inst. Fourier 61, 2803–2864 (2013)
Costello, K., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv:1201.4501 (2012)
Dai, X., Melrose, R.: Adiabatic limit, heat kernels and analytic torsions. In: Dai, X., Rong, X (eds.) Metric and Differential Geometry. Progress in Mathematics, Vol. 297, pp. 233–298. Springer, Basel (2012)
Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S (eds.) Ingegrable Systems and Quantum Groups. Lecture Notes in Mathematics, Vol. 1620, pp. 120–348. Springer, Berlin, Heidelberg (1996)
Fan, H.: Schrödinger equations, deformation theory and tt ∗-geometry. arXiv:1107.1290 (2011)
Fan, H., Jarvis, T.J., Ruan, Y.: Geometry and analysis of spin equations. Commun. Pure Appl. Math. 61, 745–788 (2008)
Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178, 1–106 (2013)
Fan, H., Jarvis, T.J., Ruan, Y.: The Witten equation and its virtual fundamental cycle. Book “FJRW theory”. arXiv:0712.4025 (2007)
Fan, H., Francis, A., Jarvis, T., Merrell, E., Ruan, Y.: Witten’s d4 integrable hierarchies conjecture. Chin. Ann. Math. 37B, 175–192 (2016)
Fang, H., Lu, Z., Yoshikawa, K.: Asymptotic behavior of the BCOV torsion of Calabi-Yau moduli. J. Differ. Geom. 80, 175–259 (2008)
Franz, W.: ÜBer die Torsion einer Überdeckung. J. Reine angew. Math 173, 245–254 (1935)
Guillemin, V., Wang, Z.: Semiclassical spectral invariants for schrödinger operators. J. Differ. Geom. 91, 103–128 (2012)
He, W., Li, S., Shen, Y., Webb, R.: Landau-Ginzburg mirror symmetry conjecture. arXiv:1503.01757 (2015)
Hertling, C., Kurbel, R.: On the classification of quasi-homogeneous singularities. arXiv:1009.0763 (2010)
Hitrik, M., Polterovich, I.: Resolvent expansion and trace regularizations for Schrödinger operators. In: Karpeshina, Y., Weikard, R., Zeng, Y (eds.) Advances in Differential Equations and Mathematical Physics (Birmingham, Al, 2002). Contemporary Mathematics, Vol. 327, pp. 161–173. Amer. Math. Soc., Providence, RI (2003)
Kondrat’ev, V.A., Shubin, M.A.: Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry. In: Rossmann, J., Takac, P., Wildenhain, G (eds.) The Maz’ya Anniversary Collection, Vol. 2. Operator Theory Advances and Applications, Vol. 110, pp. 185–226. Birkhäuser, Basel (1999)
Li, C.-C., Li, S., Saito, K.: Primitive forms via polyvector fields. arXiv:1311.1659 (2013)
Ma, X.: Submersions and equivariant Quillen metrics. Ann. l’inst. Fourier 50, 1539–1588 (2000)
Ma, X.: Orbifolds and analytic torsions. Trans. Amer. Math. Soc. 357, 2205–2233 (2005)
Manin, Y.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces. AMS Colloquium Publications, vol. 47. Amer. Math. Soc., Providence, RI (1999)
Mathai, V., Wu, S.Y.: Twisted analytic torsion. Sci. China Math. 53, 555–563 (2010)
Milnor, J.: Whitehead torsion. Bull. Amer. Math. Soc. 72, 358–426 (1966)
Müller, W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978)
Müller, W.: Analytic torsion and R-torsion for unimodular representations. J. Amer. Math. Soc. 6, 721–753 (1993)
Ray, D.B., Singer, I.M.: R-Torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)
Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. (2) 98, 154–177 (1973)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis (Revised and Enlarged Edition). Academic Press, New York (1980)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978)
Reidemeister, K.: Homotopieringe und linsenräume. Hamburger Abhandl. 11, 102–109 (1935)
Sabbah, C.: Universal unfoldings of Laurent polynomials and tt∗ structures. In: Donagi, R.Y., Wendland, K. (eds.) From Hodge Theory to Integrability and TQFT: tt∗-Geometry. Proceedings Symposia in Pure Mathematics, vol. 78, pp. 1–29. Amer. Math. Soc., Providence, RI (2008)
Saito, K.: Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 775–792 (1982)
Saito, K.: Period mapping associated a primitive form. Publ. Res. Inst. Math. Sci. Kyoto Univ. 19, 1231–1264 (1983)
Saito, K., Takahashi, A.: From primitive forms to Frobenius manifolds. In: Donagi, R.Y., Wendland, K. (eds.) From Hodge Theory to Integrability and TQFT: tt∗-Geometry. Proceedings Symposia in Pure Mathematics, vol. 78, pp. 31–48. Amer. Math. Soc., Providence, RI (2008)
Seeley, R.: Complex powers of an elliptic operator. In: Calderón, A.P. (ed.) Singular Integrals. Proceedings of Symposia in Pure Mathematics, vol. 10, pp. 288–307. Amer. Math. Soc., Providence, RI (1967)
Wen, H., Fan, H.: A twisted \(\bar {\partial },_{f}\)-Neumann problem and Toeplitz n-tuples from singularity theory. arxiv:1505.04422 (2015)
Yoshikawa, K.-I.: K3 Surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space. Invent. Math. 156, 53–117 (2004)
Yoshikawa, K.-I.: K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space III: the case r(M)≥ 18. Math. Z. 272, 175–190 (2012)
Zinger, A.: The reduced genus-one Gromov-Witten invariants of Calabi-Yau hypersurfaces. J. Amer. Math. Soc. 22, 691–737 (2009)