Toroidal automorphic forms for function fields

Springer Science and Business Media LLC - Tập 194 - Trang 555-596 - 2012
Oliver Lorscheid1
1Math. Dept., The City College of New York, New York, USA

Tóm tắt

The space of toroidal automorphic forms was introduced by Zagier in 1979. Let F be a global field. An automorphic form on GL(2) is toroidal if it has vanishing constant Fourier coefficients along all embedded non-split tori. The interest in this space stems from the fact (amongst others) that an Eisenstein series of weight s is toroidal if s is a non-trivial zero of the zeta function, and thus a connection with the Riemann hypothesis is established. In this paper, we concentrate on the function field case. We show the following results. The (n −1)-th derivative of a non-trivial Eisenstein series of weight s and Hecke character x is toroidal if and only if L(x, s+1/2) vanishes in s to order at least n (for the “only if” part we assume that the characteristic of F is odd). There are no non-trivial toroidal residues of Eisenstein series. The dimension of the space of derivatives of unramified Eisenstein series equals h(g −1)+1 if the characteristic is not 2; in characteristic 2, the dimension is bounded from below by this number. Here g is the genus and h is the class number of F. The space of toroidal automorphic forms is an admissible representation and every irreducible subquotient is tempered.

Tài liệu tham khảo

D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics, Vol. 55, Cambridge University Press, Cambridge, 1997. G. Chinta, Solomon Friedberg, and Jeffrey Hoffstein, Multiple Dirichlet series and automorphic forms, in Multiple Dirichlet Series, Automorphic Forms, and Analytic number theory, Proceedings of Symposia in Pure Mathematics pages, Vol. 75, American Mathematical Society, Providence, RI, 2006, pp. 3–41. L. Clozel and E. Ullmo, Équidistribution de mesures algébriques, Compositio Mathematica 141 (2005), 1255–1309. G. Cornelissen and O. Lorscheid, Toroidal automorphic forms for some function fields, Journal of Number Theory 129 (2009), 1456–1463. G. Cornelissen and O. Lorscheid, Toroidal automorphic forms, Waldspurger periods and double Dirichlet series, in Multiple Dirichlet series, L-functions and automorphic forms, Birkhaüser, Boston, 2012, to appear. V. G. Drinfel’d, Proof of the Petersson conjecture for GL(2) over a global field of characteristic p, Funktsional’nyĭ Analiz i ego Prilozheniya 22 (1988), 34–54. B. Fisher and S. Friedberg, Double Dirichlet series over function fields, Compositio Mathematica 140 (2004), 613–630. S. Friedberg, J. Hoffstein and D. Lieman, Double Dirichlet series and the n-th order twists of Hecke L-series, Mathematische Annalen 327 (2003), 315–338. S. S. Gelbart, Automorphic Forms on Ad`ele Groups, Princeton University Press, Princeton, N.J., Annals of Mathematics Studies, No. 83, 1975. S. S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view, in Automorphic Forms, Representations and L-Functions, Part 1, Proceedings of Symposia in Pure Mathematics, XXXIII, American Mathematical Society, Providence, RI, 1979, pp. 213–251. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Graduate Texts in Mathematics, 1977. E. Hecke, Über die Kroneckersche Grenzformel für reelle quadratische Körper und die Klassenzahl relativ-abelscher Körper, in Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959, pp. 198–207. G. Lachaud, Zéros des fonctions L et formes toriques, Comptes Rendus Mathématique, Académie des Sciences, Paris 335 (2002), 219–222. G. Lachaud, Spectral analysis and the Riemann hypothesis, Journal of Computational and Applied Mathematics 160 (2003), 175–190. G. Lachaud, Zéros des fonctions L et formes toroïdales, (2009), preprint arXiv:0907.0536. S. Lang, Algebra, Graduate Texts in Mathematics, Vol. 211, third edition, Springer-Verlag, New York, 2002. W. C. W. Li, Eisenstein series and decomposition theory over function fields, Mathematische Annalen 240 (1979), 115–139. O. Lorscheid, Toroidal automorphic forms for function fields, PhD thesis, University of Utrecht, 2008. Available from http://igitur-archive.library.uu.nl. O. Lorscheid, Automorphic forms for elliptic function fields, Mathematische Zeitschrift, to appear. O. Lorscheid, Graphs of Hecke operators, Algebra and Number Theory, to appear. S. Lysenko, Geometric Waldspurger periods, Compositio Mathematica 144 (2008), 377–438. C. Moeglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, Vol. 113 Cambridge University Press, Cambridge, 1995. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second edition, The Clarendon Press Oxford University Press, New York, 1986. D. Ulmer, Geometric non-vanishing, Inventiones Mathematicae 159 (2005), 133–186. J.-L. Waldspurger, Correspondance de Shimura, Journal de Mathématiques Pures et Appliquées. Neuviéme Série 59 (1980), 1–132. J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Compositio Mathematica 54 (1985), 121–171. J. -L. Waldspurger, Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie, Compositio Mathematica 54 (1985), 173–242. J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Mathematicum 3 (1991), 219–307. A. Weil, Basic number theory, Classics in Mathematics, Springer-Verlag, Berlin, 1995. F. Wielonsky, Séries d’Eisenstein, intégrales toroïdales et une formule de Hecke, Enseignement des Mathématiques 31 (1985), 93–135. D. Zagier, Eisenstein series and the Riemann zeta function, in Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Institute of Fundamental Research Studies in Mathematics, Vol. 10, Tata Inst. Fundamental Reserch, Bombay, 1981. pp. 275–301.