Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tối ưu hóa hình thái kết cấu cho các thuộc tính động với việc xem xét các thông số không chắc chắn hỗn hợp
Tóm tắt
Trong thiết kế và chế tạo các thành phần cơ khí, các thuộc tính động của cấu trúc liên tục là một trong những hiệu suất quan trọng nhất. Đồng thời, sự không chắc chắn là phổ biến trong các vấn đề động lực học này. Bài báo này trình bày một phương pháp tối ưu hóa hình thái kết cấu mạnh mẽ cho các thuộc tính động với việc xem xét các tham số không chắc chắn hỗn hợp. Các bất định xác suất không chính xác liên quan đến vật liệu, hình học và điều kiện biên được coi là một mô hình ngẫu nhiên khoảng, trong đó các tham số phân phối xác suất của các biến ngẫu nhiên được mô hình hóa như các biến khoảng thay vì các giá trị chính xác đã cho. Hai thuộc tính động, bao gồm độ tuân thủ động và giá trị riêng, được chọn làm hàm mục tiêu. Ngoài ra, tần số kích thích khác nhau hoặc giá trị riêng cũng được thảo luận. Trong công trình này, phương pháp tối ưu hóa cấu trúc tiến hóa hai chiều (BESO) được áp dụng để tìm ra bố trí tối ưu mạnh mẽ của cấu trúc. Một loạt các ví dụ số được trình bày để minh họa quy trình tối ưu hóa, và hiệu quả của phương pháp đề xuất được chứng minh rõ ràng.
Từ khóa
#tối ưu hóa hình thái #thuộc tính động #không chắc chắn hỗn hợp #mô hình ngẫu nhiên khoảng #phương pháp BESOTài liệu tham khảo
Arwade SR, Grigoriu M (2004) Probabilistic model for polycrystalline microstructures with application to intergranular fracture. J Eng Mech 130:997–1005
Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness–application to truss structures. Comput Struct 89:1131–1141
Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224
Bendsoe MP, Sigmund O (2013) Topology optimization. Theory, methods, and applications. 2nd ed. corrected printing. (2004)
Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654
Bendsøe MP, Sigmund O (2004) Topology optimization: theory, method and applications. Handbook of Global Optimization 34:179–203
Benhaim Y (1993) Convex models of uncertainty in radial pulse buckling of shells. J Appl Mech 60:683–688
Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, 1990
Ben-Tal A, Nemirovski A (2004) Robust truss topology design via semidefinite programming. SIAM J Optim 7:991–1016
Bruno L, Canuto C, Fransos D (2009) Stochastic aerodynamics and aeroelasticity of a flat plate via generalised polynomial chaos. J Fluids Struct 25:1158–1176
Chen S, Chen W (2006) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44:1–18
Chen B-C, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 37:57–70
Chen N, Yu D, Xia B, Ma Z (2016a) Topology optimization of structures with interval random parameters. Comput Meth Appl Mech Eng 307:300–315
Chen N, Yu D, Xia B (2016b) Unified analysis approach for the energy flow in coupled vibrating systems with two types of hybrid uncertain parameters. Mech Syst Signal Process 70–71:542–556
Chowdhury MS, Song C, Gao W, Wang C (2016) Reliability analysis of homogeneous and bimaterial cracked structures by the scaled boundary finite element method and a hybrid random-interval model. Struct Saf 59:53–66
Chryssanthopoulos MK, Poggi C (1995) Probabilistic imperfection sensitivity analysis of axially compressed composite cylinders. Eng Struct 17:398–406
Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502
Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193:2221–2237
Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110
Dunning PD, Kim HA (2013) Robust topology optimization: minimization of expected and variance of compliance. AIAA J 51:2656–2664
Elishakoff I, Colombi P (1993) Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Comput Methods Appl Mech Eng 104:187–209
Elishakoff I, Cai GQ, Jr JHS (1994) Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. Int J Non Linear Mech 29:71–82
Elishakoff I, Elisseeff P, Glegg SAL (2012) Nonprobabilistic, convex-theoretic modeling of scatter in material properties. AIAA J 32:843–849
Fujita K, Takewaki I (2011) An efficient methodology for robustness evaluation by advanced interval analysis using updated second-order Taylor series expansion. Eng Struct 33:3299–3310
Gao W, Song C, Tin-Loi F (2010) Probabilistic interval analysis for structures with uncertainty. Struct Saf 32:191–199
Gao W, Wu D, Song C, Tin-Loi F, Li X (2011) Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem Anal Des 47:643–652
Guo J, Du X (2009) Reliability sensitivity analysis with random and interval variables. Int J Numer Methods Eng 78:1585–1617
Hammer VB, Olhoff N (2000) Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, WCSMO-3, May 17-21, 1999, State University of New York at Buffalo, Buffalo, New York. 2000
He ZC, Zhang GY, Deng L, Li E, Liu GR (2015) Topology optimization using node-based smoothed finite element method. Int J Appl Mech 07:1550085
Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049
Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401
Huang X, Xie M (2010) On topological design optimization of structures against vibration and noise emission. Computational aspects of structural acoustics and vibration 217–276
Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364
Hurtado JE, Alvarez DA (2012) The encounter of interval and probabilistic approaches to structural reliability at the design point. Comput Methods Appl Mech Eng 225–228:74–94
Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput Methods Appl Mech Eng 200:1945–1962
Jiang C, Li WX, Han X, Liu LX, Le PH (2011) Structural reliability analysis based on random distributions with interval parameters. Comput Struct 89:2292–2302
Jiang C, Han X, Liu W, Liu J, Zhang Z (2012) A hybrid reliability approach based on probability and interval for uncertain structures. J Mech Des 134:310–311
Jiang C, Ni BY, Han X, Tao YR (2014) Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Eng 268:656–676
Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253:687–709
Kala Z (2005) Fuzzy sets theory in comparison with stochastic methods to analyse nonlinear behaviour of a steel member under compression. Nonlinear Anal Modell Control 10:65–75
Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46:51–67
Knoll P, Reich S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524
Lee KH, Park GJ (2001) Robust optimization considering tolerances of design variables. Comput Struct 79:77–86
Li E, Chang CC, He ZC, Zhang Z, Li Q (2016) Smoothed finite element method for topology optimization involving incompressible materials. Eng Optim 48:2064–2089
Lógó J (2007) New type of optimality criteria method in case of probabilistic loading conditions. Mech Based Des Struct Mach 35:147–162
Lógó J, Ghaemi M, Rad MM (2009) Optimal topologies in case of probabilistic loading: the influence of load correlation. Mech Based Des Struct Mach 37:327–348
Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency response problem. Comput Mech 13:157–174
Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280
Massa F, Tison T, Lallemand B (2006) A fuzzy procedure for the static design of imprecise structures. Comput Methods Appl Mech Eng 195:925–941
Mcwilliam S (2001) Anti-optimisation of uncertain structures using interval analysis. Comput Struct 79:421–430
Min S, Kikuchi N, Park Y, Kim S, Chang S (1999a) Optimal topology design of structures under dynamic loads. Struct Optim 17:208–218
Min S, Kikuchi N, Park YC, Kim S, Chang S (1999b) Optimal topology design of structures under dynamic loads. Struct Optim 17:208–218
Min S, Nishiwaki S, Kikuchi N (2000) Unified topology design of static and vibrating structures using multiobjective optimization. Comput Struct 75:93–116
Modares M, Venkitaraman S (2014) Reliable condition assessment of structures using hybrid structural measurements and structural uncertainty analyses. Struct Saf 52:202–208
Moens D, Vandepitte D (2004) An interval finite element approach for the calculation of envelope frequency response functions. Int J Numer Methods Eng 61:2480–2507
Moens D, Vandepitte D (2007) Interval sensitivity theory and its application to frequency response envelope analysis of uncertain structures. Comput Methods Appl Mech Eng 196:2486–2496
Moses F (1997) Problems and prospects of reliability-based optimization. Eng Struct 19:293–301
Olhoff N, Du J (2005) Topology optimization of structures against vibration and noise. Proceedings of the 12th International Congress on Sound and Vibration
Olhoff N, Du J (2009) On topological design optimization of structures against vibration and noise emission. Computational Aspects of Structural Acoustics and Vibration pp 217–276
Olhoff N, Du J (2014a) Introductory notes on topological design optimization of vibrating continuum structures. Topology Optimization in Structural and Continuum Mechanics. Springer pp 87–93
Olhoff N, Du J (2014b) Topological design for minimum sound emission from structures under forced vibration. Topology Optimization in Structural and Continuum Mechanics. Springer pp 341–357
Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comp Methods Appl Mech Eng 191:3491–3507
Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11
Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput Methods Appl Mech Eng 152:361–372
Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200:3613–3627
Shu L, Wang MY, Fang Z, Ma Z, Wei P (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330:5820–5834
Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051
Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Sci Eng 1:71–105
Vicente WM, Zuo ZH, Pavanello R, Calixto TKL, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136
Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246
Wang C, Qiu Z, He Y (2015) Fuzzy interval perturbation method for uncertain heat conduction problem with interval and fuzzy parameters. Int J Numer Methods Eng 104:330–346
Xia B, Yu D (2014) An interval random perturbation method for structural-acoustic system with hybrid uncertain parameters. Int J Numer Methods Eng 97:181–206
Xia B, Yu D, Liu J (2013) Hybrid uncertain analysis of acoustic field with interval random parameters. Comput Methods Appl Mech Eng 256:56–69
Xia B, Yu D, Han X, Jiang C (2014) Unified response probability distribution analysis of two hybrid uncertain acoustic fields. Comput Methods Appl Mech Eng 276:20–34
Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896
Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58:1067–1073
Yan K, Cheng G, Wang BP (2016) Topology optimization of plate structures subject to initial excitations for minimum dynamic performance index. Struct Multidiscip Optim 53:623–633
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
Zhang W, Liu J, Cho C, Han X (2015) A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures. Mech Syst Signal Process 60–61:853–865
Zhao X, Song W, Gea HC, Xu L (2014) Topology optimization with unknown-but-bounded load uncertainty, ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers pp V02BT03A053-V002BT003A053
Zhou MJ (2005) A design optimization method using evidence theory. J Mech Des 128:1153–1161
Zhu LP, Elishakoff I (1996) Hybrid probabilistic and convex modeling of excitation and response of periodic structures. Math Probl Eng 2:143–163
Zhu J-H, Zhang W-H, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622