Tối ưu hóa hình thái kết cấu cho các thuộc tính động với việc xem xét các thông số không chắc chắn hỗn hợp

Structural and Multidisciplinary Optimization - Tập 57 - Trang 625-638 - 2017
Z. C. He1,2, Y. Wu1, Eric Li2,3
1State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, People’s Republic of China
2The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
3Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, China

Tóm tắt

Trong thiết kế và chế tạo các thành phần cơ khí, các thuộc tính động của cấu trúc liên tục là một trong những hiệu suất quan trọng nhất. Đồng thời, sự không chắc chắn là phổ biến trong các vấn đề động lực học này. Bài báo này trình bày một phương pháp tối ưu hóa hình thái kết cấu mạnh mẽ cho các thuộc tính động với việc xem xét các tham số không chắc chắn hỗn hợp. Các bất định xác suất không chính xác liên quan đến vật liệu, hình học và điều kiện biên được coi là một mô hình ngẫu nhiên khoảng, trong đó các tham số phân phối xác suất của các biến ngẫu nhiên được mô hình hóa như các biến khoảng thay vì các giá trị chính xác đã cho. Hai thuộc tính động, bao gồm độ tuân thủ động và giá trị riêng, được chọn làm hàm mục tiêu. Ngoài ra, tần số kích thích khác nhau hoặc giá trị riêng cũng được thảo luận. Trong công trình này, phương pháp tối ưu hóa cấu trúc tiến hóa hai chiều (BESO) được áp dụng để tìm ra bố trí tối ưu mạnh mẽ của cấu trúc. Một loạt các ví dụ số được trình bày để minh họa quy trình tối ưu hóa, và hiệu quả của phương pháp đề xuất được chứng minh rõ ràng.

Từ khóa

#tối ưu hóa hình thái #thuộc tính động #không chắc chắn hỗn hợp #mô hình ngẫu nhiên khoảng #phương pháp BESO

Tài liệu tham khảo

Arwade SR, Grigoriu M (2004) Probabilistic model for polycrystalline microstructures with application to intergranular fracture. J Eng Mech 130:997–1005 Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness–application to truss structures. Comput Struct 89:1131–1141 Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 Bendsoe MP, Sigmund O (2013) Topology optimization. Theory, methods, and applications. 2nd ed. corrected printing. (2004) Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654 Bendsøe MP, Sigmund O (2004) Topology optimization: theory, method and applications. Handbook of Global Optimization 34:179–203 Benhaim Y (1993) Convex models of uncertainty in radial pulse buckling of shells. J Appl Mech 60:683–688 Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, 1990 Ben-Tal A, Nemirovski A (2004) Robust truss topology design via semidefinite programming. SIAM J Optim 7:991–1016 Bruno L, Canuto C, Fransos D (2009) Stochastic aerodynamics and aeroelasticity of a flat plate via generalised polynomial chaos. J Fluids Struct 25:1158–1176 Chen S, Chen W (2006) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44:1–18 Chen B-C, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 37:57–70 Chen N, Yu D, Xia B, Ma Z (2016a) Topology optimization of structures with interval random parameters. Comput Meth Appl Mech Eng 307:300–315 Chen N, Yu D, Xia B (2016b) Unified analysis approach for the energy flow in coupled vibrating systems with two types of hybrid uncertain parameters. Mech Syst Signal Process 70–71:542–556 Chowdhury MS, Song C, Gao W, Wang C (2016) Reliability analysis of homogeneous and bimaterial cracked structures by the scaled boundary finite element method and a hybrid random-interval model. Struct Saf 59:53–66 Chryssanthopoulos MK, Poggi C (1995) Probabilistic imperfection sensitivity analysis of axially compressed composite cylinders. Eng Struct 17:398–406 Díaaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35:1487–1502 Doltsinis I, Kang Z (2004) Robust design of structures using optimization methods. Comput Methods Appl Mech Eng 193:2221–2237 Du J, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip Optim 34:91–110 Dunning PD, Kim HA (2013) Robust topology optimization: minimization of expected and variance of compliance. AIAA J 51:2656–2664 Elishakoff I, Colombi P (1993) Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters. Comput Methods Appl Mech Eng 104:187–209 Elishakoff I, Cai GQ, Jr JHS (1994) Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. Int J Non Linear Mech 29:71–82 Elishakoff I, Elisseeff P, Glegg SAL (2012) Nonprobabilistic, convex-theoretic modeling of scatter in material properties. AIAA J 32:843–849 Fujita K, Takewaki I (2011) An efficient methodology for robustness evaluation by advanced interval analysis using updated second-order Taylor series expansion. Eng Struct 33:3299–3310 Gao W, Song C, Tin-Loi F (2010) Probabilistic interval analysis for structures with uncertainty. Struct Saf 32:191–199 Gao W, Wu D, Song C, Tin-Loi F, Li X (2011) Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem Anal Des 47:643–652 Guo J, Du X (2009) Reliability sensitivity analysis with random and interval variables. Int J Numer Methods Eng 78:1585–1617 Hammer VB, Olhoff N (2000) Proceedings of the 3rd World Congress of Structural and Multidisciplinary Optimization, WCSMO-3, May 17-21, 1999, State University of New York at Buffalo, Buffalo, New York. 2000 He ZC, Zhang GY, Deng L, Li E, Liu GR (2015) Topology optimization using node-based smoothed finite element method. Int J Appl Mech 07:1550085 Huang X, Xie YM (2007) Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem Anal Des 43:1039–1049 Huang X, Xie YM (2009) Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech 43:393–401 Huang X, Xie M (2010) On topological design optimization of structures against vibration and noise emission. Computational aspects of structural acoustics and vibration 217–276 Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88:357–364 Hurtado JE, Alvarez DA (2012) The encounter of interval and probabilistic approaches to structural reliability at the design point. Comput Methods Appl Mech Eng 225–228:74–94 Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Comput Methods Appl Mech Eng 200:1945–1962 Jiang C, Li WX, Han X, Liu LX, Le PH (2011) Structural reliability analysis based on random distributions with interval parameters. Comput Struct 89:2292–2302 Jiang C, Han X, Liu W, Liu J, Zhang Z (2012) A hybrid reliability approach based on probability and interval for uncertain structures. J Mech Des 134:310–311 Jiang C, Ni BY, Han X, Tao YR (2014) Non-probabilistic convex model process: a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems. Comput Methods Appl Mech Eng 268:656–676 Jog CS (2002) Topology design of structures subjected to periodic loading. J Sound Vib 253:687–709 Kala Z (2005) Fuzzy sets theory in comparison with stochastic methods to analyse nonlinear behaviour of a steel member under compression. Nonlinear Anal Modell Control 10:65–75 Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46:51–67 Knoll P, Reich S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscip Optim 41:507–524 Lee KH, Park GJ (2001) Robust optimization considering tolerances of design variables. Comput Struct 79:77–86 Li E, Chang CC, He ZC, Zhang Z, Li Q (2016) Smoothed finite element method for topology optimization involving incompressible materials. Eng Optim 48:2064–2089 Lógó J (2007) New type of optimality criteria method in case of probabilistic loading conditions. Mech Based Des Struct Mach 35:147–162 Lógó J, Ghaemi M, Rad MM (2009) Optimal topologies in case of probabilistic loading: the influence of load correlation. Mech Based Des Struct Mach 37:327–348 Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency response problem. Comput Mech 13:157–174 Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121:259–280 Massa F, Tison T, Lallemand B (2006) A fuzzy procedure for the static design of imprecise structures. Comput Methods Appl Mech Eng 195:925–941 Mcwilliam S (2001) Anti-optimisation of uncertain structures using interval analysis. Comput Struct 79:421–430 Min S, Kikuchi N, Park Y, Kim S, Chang S (1999a) Optimal topology design of structures under dynamic loads. Struct Optim 17:208–218 Min S, Kikuchi N, Park YC, Kim S, Chang S (1999b) Optimal topology design of structures under dynamic loads. Struct Optim 17:208–218 Min S, Nishiwaki S, Kikuchi N (2000) Unified topology design of static and vibrating structures using multiobjective optimization. Comput Struct 75:93–116 Modares M, Venkitaraman S (2014) Reliable condition assessment of structures using hybrid structural measurements and structural uncertainty analyses. Struct Saf 52:202–208 Moens D, Vandepitte D (2004) An interval finite element approach for the calculation of envelope frequency response functions. Int J Numer Methods Eng 61:2480–2507 Moens D, Vandepitte D (2007) Interval sensitivity theory and its application to frequency response envelope analysis of uncertain structures. Comput Methods Appl Mech Eng 196:2486–2496 Moses F (1997) Problems and prospects of reliability-based optimization. Eng Struct 19:293–301 Olhoff N, Du J (2005) Topology optimization of structures against vibration and noise. Proceedings of the 12th International Congress on Sound and Vibration Olhoff N, Du J (2009) On topological design optimization of structures against vibration and noise emission. Computational Aspects of Structural Acoustics and Vibration pp 217–276 Olhoff N, Du J (2014a) Introductory notes on topological design optimization of vibrating continuum structures. Topology Optimization in Structural and Continuum Mechanics. Springer pp 87–93 Olhoff N, Du J (2014b) Topological design for minimum sound emission from structures under forced vibration. Topology Optimization in Structural and Continuum Mechanics. Springer pp 341–357 Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comp Methods Appl Mech Eng 191:3491–3507 Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20:2–11 Qiu Z, Elishakoff I (1998) Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Comput Methods Appl Mech Eng 152:361–372 Schevenels M, Lazarov BS, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200:3613–3627 Shu L, Wang MY, Fang Z, Ma Z, Wei P (2011) Level set based structural topology optimization for minimizing frequency response. J Sound Vib 330:5820–5834 Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051 Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Sci Eng 1:71–105 Vicente WM, Zuo ZH, Pavanello R, Calixto TKL, Picelli R, Xie YM (2016) Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures. Comput Methods Appl Mech Eng 301:116–136 Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246 Wang C, Qiu Z, He Y (2015) Fuzzy interval perturbation method for uncertain heat conduction problem with interval and fuzzy parameters. Int J Numer Methods Eng 104:330–346 Xia B, Yu D (2014) An interval random perturbation method for structural-acoustic system with hybrid uncertain parameters. Int J Numer Methods Eng 97:181–206 Xia B, Yu D, Liu J (2013) Hybrid uncertain analysis of acoustic field with interval random parameters. Comput Methods Appl Mech Eng 256:56–69 Xia B, Yu D, Han X, Jiang C (2014) Unified response probability distribution analysis of two hybrid uncertain acoustic fields. Comput Methods Appl Mech Eng 276:20–34 Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49:885–896 Xie YM, Steven GP (1996) Evolutionary structural optimization for dynamic problems. Comput Struct 58:1067–1073 Yan K, Cheng G, Wang BP (2016) Topology optimization of plate structures subject to initial excitations for minimum dynamic performance index. Struct Multidiscip Optim 53:623–633 Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353 Zhang W, Liu J, Cho C, Han X (2015) A hybrid parameter identification method based on Bayesian approach and interval analysis for uncertain structures. Mech Syst Signal Process 60–61:853–865 Zhao X, Song W, Gea HC, Xu L (2014) Topology optimization with unknown-but-bounded load uncertainty, ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers pp V02BT03A053-V002BT003A053 Zhou MJ (2005) A design optimization method using evidence theory. J Mech Des 128:1153–1161 Zhu LP, Elishakoff I (1996) Hybrid probabilistic and convex modeling of excitation and response of periodic structures. Math Probl Eng 2:143–163 Zhu J-H, Zhang W-H, Xia L (2016) Topology optimization in aircraft and aerospace structures design. Arch Comput Methods Eng 23:595–622