Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006.
Choi, 1996, Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis, Int J Fract, 80, 73, 10.1007/BF00036481
Donoghue, 2009, The fracture toughness of composite laminates with a negative Poisson’s ratio, Phys Status Solidi (b), 246, 2011, 10.1002/pssb.200982031
Chen, 1996, Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams, J Eng Mater Technol, 118, 285, 10.1115/1.2806807
Lakes, 1987, Foam structures with a negative Poisson’s ratio, Science, 235, 1038, 10.1126/science.235.4792.1038
Evans, 2000, Auxetic materials: Functional materials and structures from lateral thinking!, Adv Mater, 12, 617, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
Lakes, 1993, Advances in negative Poisson’s ratio materials, Adv Mater, 5, 293, 10.1002/adma.19930050416
Bertoldi, 2010, Negative Poisson’s ratio behavior induced by an elastic instability, Adv Mater, 22, 361, 10.1002/adma.200901956
Babaee, 2013, 3D Soft metamaterials with negative Poisson’s ratio, Adv Mater, 25, 5044, 10.1002/adma.201301986
Wang, 2010, Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension, Adv Funct Mater, 20, 3025, 10.1002/adfm.201000282
Song, 2008, Effect of a negative Poisson ratio in the tension of ceramics, Phys Rev Lett, 100, 10.1103/PhysRevLett.100.245502
Ciambella, 2015, Nonlinear elasticity of auxetic open cell foams modeled as continuum solids, J Appl Phys, 117, 10.1063/1.4921101
Aleshin, 2012, Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals, J Appl Phys, 112, 10.1063/1.4767224
Kolpakov, 1985, Determination of the average characteristics of elastic frameworks, J Appl Math Mech, 49, 739, 10.1016/0021-8928(85)90011-5
Almgren, 1985, An isotropic three-dimensional structure with Poisson’s ratio=−1, J Elasticity, 15, 427, 10.1007/BF00042531
Theocaris, 1997, Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach, Arch Appl Mech, 67, 274, 10.1007/s004190050117
Bendsoe, 2003
Eschenauer, 2001, Topology optimization of continuum structures: A review*, Appl Mech Rev, 54, 331, 10.1115/1.1388075
Rozvany, 2001, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Struct Multidiscip Optim, 21, 90, 10.1007/s001580050174
Sigmund, 2013, Topology optimization approaches, Struct Multidiscip Optim, 48, 1031, 10.1007/s00158-013-0978-6
Sigmund, 1994, Materials with prescribed constitutive parameters: An inverse homogenization problem, Internat J Solids Structures, 31, 2313, 10.1016/0020-7683(94)90154-6
Sigmund, 1995, Tailoring materials with prescribed elastic properties, Mech Mater, 20, 351, 10.1016/0167-6636(94)00069-7
Wang, 2005, A level-set based variational method for design and optimization of heterogeneous objects, Comput-Aided Des, 37, 321, 10.1016/j.cad.2004.03.007
Allaire, 2005, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern, 34, 59
Zhang, 2007, Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures, Acta Mech Sin, 23, 77, 10.1007/s10409-006-0045-2
Xu, 1999, Making negative Poisson’s ratio microstructures by soft lithography, Adv Mater, 11, 1186, 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K
Schwerdtfeger, 2011, Design of auxetic structures via mathematical optimization, Adv Mater, 23, 2650, 10.1002/adma.201004090
Andreassen, 2014, Design of manufacturable 3D extremal elastic microstructure, Mech Mater, 69, 1, 10.1016/j.mechmat.2013.09.018
Shan, 2015, Design of planar isotropic negative Poisson’s ratio structures, Extreme Mech Lett, 4, 96, 10.1016/j.eml.2015.05.002
Clausen, 2015, Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv Mater, 27, 5523, 10.1002/adma.201502485
Osher, 1988, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J Comput Phys, 79, 12, 10.1016/0021-9991(88)90002-2
Wang, 2003, A level set method for structural topology optimization, Comput Methods Appl Mech Engrg, 192, 227, 10.1016/S0045-7825(02)00559-5
Allaire, 2004, Structural optimization using sensitivity analysis and a level-set method, J Comput Phys, 194, 363, 10.1016/j.jcp.2003.09.032
Cioranescu, 1979, Homogenization in open sets with holes, J Math Anal Appl, 71, 590, 10.1016/0022-247X(79)90211-7
Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987.
Allaire, 1992, Homogenization and two-scale convergence, SIAM J Math Anal, 23, 1482, 10.1137/0523084
Hassani, 1998, A review of homogenization and topology optimization I—homogenization theory for media with periodic structure, Comput Struct, 69, 707, 10.1016/S0045-7949(98)00131-X
Hassani, 1998, A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations, Comput Struct, 69, 719, 10.1016/S0045-7949(98)00132-1
Hassani, 1998, A review of homogenization and topology optimization III—topology optimization using optimality criteria, Comput Struct, 69, 739, 10.1016/S0045-7949(98)00133-3
Bensoussan, 2011
Prawoto, 2012, Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio, Comput Mater Sci, 58, 140, 10.1016/j.commatsci.2012.02.012
Hollister, 1992, A comparison of homogenization and standard mechanics analyses for periodic porous composites, Comput Mech, 10, 73, 10.1007/BF00369853
Sethian, 2000, Structural boundary design via level set and immersed interface methods, J Comput Phys, 163, 489, 10.1006/jcph.2000.6581
Osher, 2001, Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum, J Comput Phys, 171, 272, 10.1006/jcph.2001.6789
Allaire, 2002, A level-set method for shape optimization, C R Acad Sci., Paris Ser I, 334, 1, 10.1016/S1631-073X(02)02412-3
Wang, 2004, PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization, Comput Model Eng Sci, 6, 373
Belytschko, 2003, Topology optimization with implicitly function and regularization, Int J Numer Method Eng, 57, 1177, 10.1002/nme.824
Wang, 2006, Radial basis functions and level set method for structural topology optimization, Int J Numer Method Eng, 65, 2060, 10.1002/nme.1536
Wang, 2006, Structural shape and topology optimization using implicit free boundary parameterization method, Comput Model Eng Sci, 13, 119
Luo, 2007, Shape and topology optimization of compliant mechanisms using a parameterization level set method, J Comput Phys, 227, 680, 10.1016/j.jcp.2007.08.011
Fedkiw, 2002, Level set methods and dynamic implicit surfaces, Surfaces, 44, 77
Sigmund, 2001, Design of multiphysics actuators using topology optimization–Part II: Two-material structures, Comput Methods Appl Mech Engrg, 190, 6605, 10.1016/S0045-7825(01)00252-3
Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010.
Gao, 2011, A mass constraint formulation for structural topology optimization with multiphase materials, Internat J Numer Methods Engrg, 88, 774, 10.1002/nme.3197
Wang, 2004, Color level sets: a multi-phase method for structural topology optimization with multiple materials, Comput Methods Appl Mech Engrg, 193, 469, 10.1016/j.cma.2003.10.008
Wang, 2005, Design of multimaterial compliant mechanisms using level-set methods, J Mech Des, 127, 941, 10.1115/1.1909206
Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013.
Lie, 2006, A variant of the level set method and applications to image segmentation, Math Comp, 75, 1155, 10.1090/S0025-5718-06-01835-7
Wei, 2009, Piecewise constant level set method for structural topology optimization, Internat J Numer Methods Engrg, 78, 379, 10.1002/nme.2478
Li, 2007, Piecewise constant level set methods for multiphase motion, Int J Numer Anal Model, 4, 291
Merriman, 1994, Motion of multiple junctions: A level set approach, J Comput Phys, 112, 334, 10.1006/jcph.1994.1105
Zhang, 2008, A multiple level set method for modeling grain boundary evolution of polycrystalline materials, Interact Multiscale Mech, 1, 178, 10.12989/imm.2008.1.2.191
Chen, 2010, A level set approach for optimal design of smart energy harvesters, Comput Methods Appl Mech Engrg, 199, 2532, 10.1016/j.cma.2010.04.008
Allaire, 2007
Haug, 1986
Choi, 2005
Belytschko, 2000