Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method

Computer-Aided Design - Tập 83 - Trang 15-32 - 2017
Panagiotis Vogiatzis1, Shikui Chen1, Xiao Wang1, Tiantian Li1, Lifeng Wang1
1Department of Mechanical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liu Q. Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. In: DTIC Document, 2006.

Choi, 1996, Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis, Int J Fract, 80, 73, 10.1007/BF00036481

Donoghue, 2009, The fracture toughness of composite laminates with a negative Poisson’s ratio, Phys Status Solidi (b), 246, 2011, 10.1002/pssb.200982031

Chen, 1996, Micromechanical analysis of dynamic behavior of conventional and negative Poisson’s ratio foams, J Eng Mater Technol, 118, 285, 10.1115/1.2806807

Lakes, 1987, Foam structures with a negative Poisson’s ratio, Science, 235, 1038, 10.1126/science.235.4792.1038

Alderson, 2007, Auxetic materials, Proc Inst Mech Eng G, 221, 565, 10.1243/09544100JAERO185

Evans, 2000, Auxetic materials: Functional materials and structures from lateral thinking!, Adv Mater, 12, 617, 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3

Lakes, 1993, Advances in negative Poisson’s ratio materials, Adv Mater, 5, 293, 10.1002/adma.19930050416

Bertoldi, 2010, Negative Poisson’s ratio behavior induced by an elastic instability, Adv Mater, 22, 361, 10.1002/adma.200901956

Babaee, 2013, 3D Soft metamaterials with negative Poisson’s ratio, Adv Mater, 25, 5044, 10.1002/adma.201301986

Wang, 2010, Bioinspired structural material exhibiting post-yield lateral expansion and volumetric energy dissipation during tension, Adv Funct Mater, 20, 3025, 10.1002/adfm.201000282

Song, 2008, Effect of a negative Poisson ratio in the tension of ceramics, Phys Rev Lett, 100, 10.1103/PhysRevLett.100.245502

Ciambella, 2015, Nonlinear elasticity of auxetic open cell foams modeled as continuum solids, J Appl Phys, 117, 10.1063/1.4921101

Aleshin, 2012, Negative Poisson’s ratio and Piezoelectric anisotropy of tetragonal ferroelectric single crystals, J Appl Phys, 112, 10.1063/1.4767224

Kolpakov, 1985, Determination of the average characteristics of elastic frameworks, J Appl Math Mech, 49, 739, 10.1016/0021-8928(85)90011-5

Almgren, 1985, An isotropic three-dimensional structure with Poisson’s ratio=−1, J Elasticity, 15, 427, 10.1007/BF00042531

Theocaris, 1997, Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach, Arch Appl Mech, 67, 274, 10.1007/s004190050117

Bendsoe, 2003

Eschenauer, 2001, Topology optimization of continuum structures: A review*, Appl Mech Rev, 54, 331, 10.1115/1.1388075

Rozvany, 2001, Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Struct Multidiscip Optim, 21, 90, 10.1007/s001580050174

Sigmund, 2013, Topology optimization approaches, Struct Multidiscip Optim, 48, 1031, 10.1007/s00158-013-0978-6

Sigmund, 1994, Materials with prescribed constitutive parameters: An inverse homogenization problem, Internat J Solids Structures, 31, 2313, 10.1016/0020-7683(94)90154-6

Sigmund, 1995, Tailoring materials with prescribed elastic properties, Mech Mater, 20, 351, 10.1016/0167-6636(94)00069-7

Wang, 2005, A level-set based variational method for design and optimization of heterogeneous objects, Comput-Aided Des, 37, 321, 10.1016/j.cad.2004.03.007

Allaire, 2005, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern, 34, 59

Zhang, 2007, Using strain energy-based prediction of effective elastic properties in topology optimization of material microstructures, Acta Mech Sin, 23, 77, 10.1007/s10409-006-0045-2

Xu, 1999, Making negative Poisson’s ratio microstructures by soft lithography, Adv Mater, 11, 1186, 10.1002/(SICI)1521-4095(199910)11:14<1186::AID-ADMA1186>3.0.CO;2-K

Schwerdtfeger, 2011, Design of auxetic structures via mathematical optimization, Adv Mater, 23, 2650, 10.1002/adma.201004090

Andreassen, 2014, Design of manufacturable 3D extremal elastic microstructure, Mech Mater, 69, 1, 10.1016/j.mechmat.2013.09.018

Shan, 2015, Design of planar isotropic negative Poisson’s ratio structures, Extreme Mech Lett, 4, 96, 10.1016/j.eml.2015.05.002

Clausen, 2015, Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv Mater, 27, 5523, 10.1002/adma.201502485

Osher, 1988, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations, J Comput Phys, 79, 12, 10.1016/0021-9991(88)90002-2

Wang, 2003, A level set method for structural topology optimization, Comput Methods Appl Mech Engrg, 192, 227, 10.1016/S0045-7825(02)00559-5

Allaire, 2004, Structural optimization using sensitivity analysis and a level-set method, J Comput Phys, 194, 363, 10.1016/j.jcp.2003.09.032

Cioranescu, 1979, Homogenization in open sets with holes, J Math Anal Appl, 71, 590, 10.1016/0022-247X(79)90211-7

Sanchez-Palencia E, Zaoui A. Homogenization techniques for composite media. In: Homogenization techniques for composite media, 1987.

Allaire, 1992, Homogenization and two-scale convergence, SIAM J Math Anal, 23, 1482, 10.1137/0523084

Hassani, 1998, A review of homogenization and topology optimization I—homogenization theory for media with periodic structure, Comput Struct, 69, 707, 10.1016/S0045-7949(98)00131-X

Hassani, 1998, A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations, Comput Struct, 69, 719, 10.1016/S0045-7949(98)00132-1

Hassani, 1998, A review of homogenization and topology optimization III—topology optimization using optimality criteria, Comput Struct, 69, 739, 10.1016/S0045-7949(98)00133-3

Bensoussan, 2011

Prawoto, 2012, Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio, Comput Mater Sci, 58, 140, 10.1016/j.commatsci.2012.02.012

Hollister, 1992, A comparison of homogenization and standard mechanics analyses for periodic porous composites, Comput Mech, 10, 73, 10.1007/BF00369853

Sethian, 2000, Structural boundary design via level set and immersed interface methods, J Comput Phys, 163, 489, 10.1006/jcph.2000.6581

Osher, 2001, Level set methods for optimization problems involving geometry and constraints. I. frequencies of a two-density inhomogeneous drum, J Comput Phys, 171, 272, 10.1006/jcph.2001.6789

Allaire, 2002, A level-set method for shape optimization, C R Acad Sci., Paris Ser I, 334, 1, 10.1016/S1631-073X(02)02412-3

Wang, 2004, PDE-driven level sets, shape sensitivity, and curvature flow for structural topology optimization, Comput Model Eng Sci, 6, 373

Belytschko, 2003, Topology optimization with implicitly function and regularization, Int J Numer Method Eng, 57, 1177, 10.1002/nme.824

Wang, 2006, Radial basis functions and level set method for structural topology optimization, Int J Numer Method Eng, 65, 2060, 10.1002/nme.1536

Wang, 2006, Structural shape and topology optimization using implicit free boundary parameterization method, Comput Model Eng Sci, 13, 119

Luo, 2007, Shape and topology optimization of compliant mechanisms using a parameterization level set method, J Comput Phys, 227, 680, 10.1016/j.jcp.2007.08.011

Fedkiw, 2002, Level set methods and dynamic implicit surfaces, Surfaces, 44, 77

Sigmund, 2001, Design of multiphysics actuators using topology optimization–Part II: Two-material structures, Comput Methods Appl Mech Engrg, 190, 6605, 10.1016/S0045-7825(01)00252-3

Gao T, Zhang W, Duysinx P. Comparison of volume constraint and mass constraint in structural topology optimization with multiple materials. In: Book of abstracts and proceeding of the 2nd international conference on engineering optimization, 2010.

Gao, 2011, A mass constraint formulation for structural topology optimization with multiphase materials, Internat J Numer Methods Engrg, 88, 774, 10.1002/nme.3197

Wang, 2004, Color level sets: a multi-phase method for structural topology optimization with multiple materials, Comput Methods Appl Mech Engrg, 193, 469, 10.1016/j.cma.2003.10.008

Wang, 2005, Design of multimaterial compliant mechanisms using level-set methods, J Mech Des, 127, 941, 10.1115/1.1909206

Allaire G, Jouve F, Michailidis G. Structural and multi-functional optimization using multiple phases and a level-set method, 2013.

Lie, 2006, A variant of the level set method and applications to image segmentation, Math Comp, 75, 1155, 10.1090/S0025-5718-06-01835-7

Wei, 2009, Piecewise constant level set method for structural topology optimization, Internat J Numer Methods Engrg, 78, 379, 10.1002/nme.2478

Li, 2007, Piecewise constant level set methods for multiphase motion, Int J Numer Anal Model, 4, 291

Merriman, 1994, Motion of multiple junctions: A level set approach, J Comput Phys, 112, 334, 10.1006/jcph.1994.1105

Zhang, 2008, A multiple level set method for modeling grain boundary evolution of polycrystalline materials, Interact Multiscale Mech, 1, 178, 10.12989/imm.2008.1.2.191

Chen, 2010, A level set approach for optimal design of smart energy harvesters, Comput Methods Appl Mech Engrg, 199, 2532, 10.1016/j.cma.2010.04.008

Allaire, 2007

Haug, 1986

Choi, 2005

Belytschko, 2000