Tối ưu hóa hình thức và sản xuất bổ sung trong việc tạo ra thân bánh răng nhẹ và giảm rung

Riad Ramadani1, Snehashis Pal2, Marko Kegl2, Jožef Predan2, Igor Drstvenšek2, Stanislav Pehan2, Aleš Belšak2
1Faculty of Mechanical Engineering, University of Prishtina “Hasan Prishtina”, Prishtina, Kosovo
2Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia

Tóm tắt

Việc giảm độ rung của bánh răng cũng như trọng lượng của nó là một lĩnh vực thách thức trong thời gian gần đây. Nghiên cứu này đề cập đến việc chế tạo một bánh răng có cấu trúc thân dạng lưới tế bào bằng công nghệ Nung Laser Chọn lọc (SLM). Thiết kế lưới tế bào xác định một cấu trúc phức tạp mà thường không thể sản xuất bằng các công nghệ chế tạo thông thường. Mặt khác, công nghệ SLM cho phép sản xuất các cấu trúc lưới tế bào phức tạp này trực tiếp từ các mô hình thiết kế hỗ trợ máy tính (CAD) của chúng. Cấu trúc thân bánh răng lưới tế bào đã được thiết kế và tối ưu hóa bằng phần mềm tối ưu hóa hình thức ProTOp và được chế tạo bằng SLM sử dụng hợp kim Ti-6Al-4V. Những vấn đề mà các nhà nghiên cứu gặp phải và giải pháp đã cho phép sản xuất bánh răng này bằng SLM được mô tả trong bài báo này. Để ước lượng hiệu suất của bánh răng trong quá trình hoạt động, áp suất âm thanh đã được đo và so sánh với các kết quả thu được từ bánh răng có thân rắn. Kết quả thí nghiệm cho thấy rằng cấu trúc lưới tế bào được nghiên cứu của thân bánh răng có khả năng giảm khối lượng và độ rung của bánh răng.

Từ khóa

#bánh răng nhẹ #giảm rung #tối ưu hóa hình thức #công nghệ SLM #cấu trúc lưới tế bào #chế tạo additive

Tài liệu tham khảo

Ji B, Han H, Lin R, Li H (2019) Failure modes of lattice sandwich plate by additive-manufacturing and its imperfection sensitivity. Acta Mech Sin Xuebao 36:430–447. https://doi.org/10.1007/s10409-019-00918-2 Calleja A, Tabernero I, Ealo JA, Campa FJ, Lamikiz A, de Lacalle LNL (2014) Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding. Int J Adv Manuf Technol 74:1219–1228. https://doi.org/10.1007/s00170-014-6057-3 Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001 Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP (2010) A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater 58:3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004 Maamoun AH, Xue YF, Elbestawi MA, Veldhuis SC (2018) The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys. Materials (Basel) 12(1):12. https://doi.org/10.3390/ma12010012 Pal S, Lojen G, Kokol V, Drstvensek I (2018) Evolution of metallurgical properties of Ti-6Al-4V alloy fabricated in different energy densities in the selective laser melting technique. J Manuf Process 35:538–546. https://doi.org/10.1016/j.jmapro.2018.09.012 Pal S, Gubeljak N, Hudak R, Lojen G, Rajtukova V, Predan J, Kokol V, Drstvensek I (2018) Tensile properties of selective laser melting products affected by building orientation and energy density. Mater Sci Eng A 743:637–647. https://doi.org/10.1016/J.MSEA.2018.11.130 Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2:20–32 Malý M, Höller C, Skalon M, Meier B, Koutný D, Pichler R, Sommitsch C, Paloušek D (2019) Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti6Al4V processed by selective laser melting. Materials (Basel) 12(6):930. https://doi.org/10.3390/ma12060930 Dong Z, Liu Y, Wen W, Ge J, Liang J (2018) Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches. Materials (Basel) 12(1):50. https://doi.org/10.3390/ma12010050 Mierzejewska ŻA, Hudák R, Sidun J (2019) Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications. Materials (Basel) 12(1):176. https://doi.org/10.3390/ma12010176 Pal S, Drstvensek I (2018) Physical behaviors of materials in selective laser melting process. DAAAM Int Sci B:239–256. https://doi.org/10.2507/daaam.scibook.2018.21 Zhou S, Su Y, Gu R, Wang Z, Zhou Y, Ma Q, Yan M (2018) Impacts of defocusing amount and molten pool boundaries on mechanical properties and microstructure of selective laser melted AlSi10Mg. Materials (Basel) 12(1):73. https://doi.org/10.3390/ma12010073 Pal S, Tiyyagura HR, Drstvenšek I, Kumar CS (2016) The effect of post-processing and machining process parameters on properties of stainless steel PH1 product produced by direct metal laser sintering. Procedia Eng 149:359–365. https://doi.org/10.1016/j.proeng.2016.06.679 Zhang X, Kang J, Rong Y, Wu P, Feng T (2018) Effect of scanning routes on the stress and deformation of overhang structures fabricated by SLM. Materials (Basel) 12(1):47. https://doi.org/10.3390/ma12010047 Zhang K, Fu G, Zhang P, Ma Z, Mao Z, Zhang D (2018) Study on the geometric design of supports for overhanging structures fabricated by selective laser melting. Materials (Basel) 12(1):27. https://doi.org/10.3390/ma12010027 Álvarez Á, Calleja A, Ortega N, López De Lacalle LN (2018) Five-axis milling of large spiral bevel gears: toolpath definition, finishing, and shape errors. Metals (Basel) 8(5):353. https://doi.org/10.3390/met8050353 Alvarez Á, Calleja A, Arizmendi M et al (2018) Spiral bevel gears face roughness prediction produced by CNC end milling centers. Materials (Basel) 11(8):1301. https://doi.org/10.3390/ma11081301 Bo P, González H, Calleja A, de Lacalle LNL, Bartoň M (2020) 5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools — Part I: Modeling and simulation. Precis Eng 62:204–212. https://doi.org/10.1016/j.precisioneng.2019.11.015 Smith JD (2003) Gear noise and vibration, 2nd edn. CRC Press, New York Fakhfakh T, Chaari F, Haddar M (2005) Numerical and experimental analysis of a gear system with teeth defects. Int J Adv Manuf Technol 25:542–550. https://doi.org/10.1007/s00170-003-1830-8 Fakhfakh T, Walha L, Louati J, Haddar M (2006) Effect of manufacturing and assembly defects on two-stage gear systems vibration. Int J Adv Manuf Technol 29:1008–1018. https://doi.org/10.1007/s00170-005-2602-4 Kahraman A, Blankenship GW (2008) Effect of involute tip relief on dynamic response of spur gear pairs. J Mech Des 121(2):313–315. https://doi.org/10.1115/1.2829460 Liu G, Parker RG (2008) Dynamic modeling and analysis of tooth profile modification for multimesh gear vibration. J Mech Des 130(12):121402. https://doi.org/10.1115/1.2976803 Ma H, Pang X, Feng R, Wen B (2016) Evaluation of optimum profile modification curves of profile shifted spur gears based on vibration responses. Mech Syst Signal Process 70-71:1131–1149. https://doi.org/10.1016/j.ymssp.2015.09.019 Xiao W, Li J, Wang S, Fang X (2016) Study on vibration suppression based on particle damping in centrifugal field of gear transmission. J Sound Vib 366:62–80. https://doi.org/10.1016/j.jsv.2015.12.014 Xiao W, Huang Y, Jiang H, Jin L (2016) Effect of powder material on vibration reduction of gear system in centrifugal field. Powder Technol 294:146–158. https://doi.org/10.1016/j.powtec.2016.01.038 Li S (2008) Experimental investigation and FEM analysis of resonance frequency behavior of three-dimensional, thin-walled spur gears with a power-circulating test rig. Mech Mach Theory 43(8):934–963. https://doi.org/10.1016/j.mechmachtheory.2007.07.009 Belsak A, Flasker J (2006) Method for detecting fatigue crack in gears. Theor Appl Fract Mech 46(2):105–113. https://doi.org/10.1016/j.tafmec.2006.07.002 Belšak A, Flašker J (2008) Vibration analysis to determine the condition of gear units. Stroj Vestnik/Journal Mech Eng 1(54):11–24 http://www.dlib.si/details/URN:NBN:SI:doc-QSILW60D Mohammed OD, Rantatalo M (2016) Dynamic response and time-frequency analysis for gear tooth crack detection. Mech Syst Signal Process 66-67:612–624. https://doi.org/10.1016/j.ymssp.2015.05.015 Harl B, Predan J, Gubeljak N, Kegl M (2017) On configuration-based optimal design of load-carrying lightweight parts. Int J Simul Model 16(2):219–228. https://doi.org/10.2507/ijsimm16(2)3.369 Ramadani R, Belsak A, Kegl M, Predan J, Pehan S (2018) Topology optimization based design of lightweight and low vibration gear bodies. Int J Simul Model 17:92–104. https://doi.org/10.2507/IJSIMM17(1)419 Pal S, Kokol V, Gubeljak N et al (2019) Dimensional errors in selective laser melting products related to different orientations and processing parameters. Mater Tehnol 53:551–558. https://doi.org/10.17222/mit.2018.156 Yang J, Zhang H, Li T, Gao Z, Nie S, Wei B (2018) A profile dressing method for grinding worm used for helical gear with higher order modification profile. Int J Adv Manuf Technol 99:161–168. https://doi.org/10.1007/s00170-018-2459-y González H, Calleja A, Pereira O, Ortega N, López de Lacalle L, Barton M (2018) Super abrasive machining of integral rotary components using grinding flank tools. Metals (Basel) 8(1):24. https://doi.org/10.3390/met8010024 CAESS ProTOp. ProTOp - Topology Optimization Software, from https://caess.eu/, accessed on 05.02.2020 User AS (2014) Abaqus 6.14. Dassault Systèmes Simulia Corp, Provid RI, USA. https://doi.org/10.1017/CBO9781107415324.004 Pal S, Lojen G, Kokol V, Drstvenšek I (2019) Reducing porosity at the starting layers above supporting bars of the parts made by selective laser melting. Powder Technol 355:268–277. https://doi.org/10.1016/j.powtec.2019.07.059 Pal S, Lojen G, Hudak R, Rajtukova V, Brajlih T, Kokol V, Drstvenšek I (2020) As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting. Addit Manuf 33:101147. https://doi.org/10.1016/j.addma.2020.101147 Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84:1391–1411. https://doi.org/10.1007/s00170-015-7655-4 Yamamoto S, Azuma H, Suzuki S, Kajino S, Sato N, Okane T, Nakano S, Shimizu T (2019) Melting and solidification behavior of Ti-6Al-4V powder during selective laser melting. Int J Adv Manuf Technol 103:4433–4442. https://doi.org/10.1007/s00170-019-03384-z Ramadani R, Kegl M, Predan J, et al (2018) Influence of cellular lattice body structure on gear vibration induced by meshing. Stroj Vestnik/Journal Mech Eng 64(10), 611-620. https://doi.org/10.5545/sv-jme.2018.5349 Mills DW, Allen RL (2004) Signal analysis time, frequency, scale and structure.