Topological understanding of thermal conductivity in synthetic slag melts for energy recovery: An experimental and molecular dynamic simulation study

Acta Materialia - Tập 234 - Trang 118014 - 2022
Jian Yang1,2, Zhe Wang3, Il Sohn1
1Department of Materials Science and Engineering, Yonsei University, Seoul, 120749, South Korea
2State Key Laboratory of Cemented Carbide, Zhuzhou, Hunan, 412000, China
3Department of Materials Science and Engineering, University of Toronto, Toronto, M5S3E4, Canada

Tài liệu tham khảo

2021, Word Steel Association, 2021 2020, World Energy Balances, 2020 Holappa, 2020, A General vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals, 10, 1117, 10.3390/met10091117 2021 Barati, 2020, Granulation and heat recovery from metallurgical slags, J. Sustain. Metall., 6, 191, 10.1007/s40831-019-00256-4 Barati, 2011, Energy recovery from high temperature slags, Energy, 36, 5440, 10.1016/j.energy.2011.07.007 Yang, 2022, Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resour. Conserv. Recycl., 178, 10.1016/j.resconrec.2021.106021 Feng, 2019, Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer, Appl. Energ., 248, 288, 10.1016/j.apenergy.2019.04.100 Sun, 2022, Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams, Nature Communications, 13, 297, 10.1038/s41467-021-27770-y Kang, 2006, Thermal Conductivity of the CaO-Al2O3-SiO2 System, ISIJ Int, 46, 420, 10.2355/isijinternational.46.420 Nagata, 1983, Thermal Conductivities of Slags for Ironmaking and Steelmaking, Tetsu-to-Hagane, 69, 1417, 10.2355/tetsutohagane1955.69.11_1417 Hasegawa, 2012, Thermal conductivity measurements of some synthetic Al2O3-CaO-SiO2 slags by means of a front-heating and front-detection laser-flash method, Metall. Mater. Trans. B, 43, 1405, 10.1007/s11663-012-9702-y Borra, 2013, Effect of alumina on slag–metal separation during iron nugget formation from high alumina Indian iron ore fines, Ironmak. Steelmak., 40, 443, 10.1179/1743281212Y.0000000073 Thangavelu, 2011, Hyperspectral radiometry to quantify the grades of iron ores of noamundi and joda mines, Eastern India, Journal of the Indian Society of Remote Sensing, 39, 473, 10.1007/s12524-011-0109-z Manchisi, 2020, Ironmaking and steelmaking slags as sustainable adsorbents for industrial effluents and wastewater treatment: a critical review of properties, performance, challenges and opportunities, Sustainability, 12, 2118, 10.3390/su12052118 Zhang, 2020, The potential utilization of slag generated from iron- and steelmaking industries: a review, Environ. Geochem. Hlth, 42, 1321, 10.1007/s10653-019-00419-y Sakamoto, 2013, Relationship between Structure and Thermodynamic Properties in the CaO–SiO2–BO1.5 Slag System, ISIJ Int., 53, 1143, 10.2355/isijinternational.53.1143 Yang, 2021, Gaining insights on high-temperature thermal conductivity and structure of oxide melts through experimental and molecular dynamics simulation study, J. Mater. Res. Technol., 10, 268, 10.1016/j.jmrt.2020.12.028 Park, 2016, Effect of Na2O on the high-temperature thermal conductivity and structure of Na2O–B2O3 melts, J. Am. Ceram. Soc., 99, 612, 10.1111/jace.14013 Mills, 1993, The influence of structure on the physico-chemical properties of slags, ISIJ Int, 33, 148, 10.2355/isijinternational.33.148 Kang, 2014, Thermal conductivity of molten slags: a review of measurement techniques and discussion based on microstructural analysis, ISIJ Int, 54, 2008, 10.2355/isijinternational.54.2008 H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, United Kingdom, 1986. Thermocouple Materials, U.S. Government Printing Office, National Bureau of Standards Monograph 40. Washington, DC, 1962. Mysen, 1980, Relations between the Anionic Structure and Viscosity of Silicate Melts - a Raman-Spectroscopic Study, Am. Mineral., 65, 690 Taylor, 1980, Structure of mineral glasses—III. NaAlSi3O8 supercooled liquid at 805°C and the effects of thermal history, Geochim. Cosmochim. Ac, 44, 109, 10.1016/0016-7037(80)90181-7 Massiot, 2002, Modelling one- and two-dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Matsui, 1996, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Phys. Chem. Miner., 23, 345, 10.1007/BF00199500 M. Matsui, A Transferable Interatomic Potential Model for Crystals and Melts in the System CaO-MgO-Al2O3-SiO2, Goldschmidt Conference, Edinburgh, Scotland, 1994. Wang, 2020, Computational Insight into the Thermal Conductivity of CaO-SiO2-Al2O3-MgO-Na2O Melts, Metall. Mater. Trans. B, 51, 2391, 10.1007/s11663-020-01891-z Roux, 2010, Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems, Comp. Mater. Sci., 49, 70, 10.1016/j.commatsci.2010.04.023 Atila, 2019, Alumina effect on the structure and properties of calcium aluminosilicate in the percalcic region: a molecular dynamics investigation, Journal of Non-Crystalline Solids, 525, 10.1016/j.jnoncrysol.2019.119470 Kim, 2015, Thermal Conductivity of Molten B2O3, B2O3–SiO2, Na2O–B2O3, and Na2O–SiO2 Systems, J. Am. Ceram. Soc., 98, 1588, 10.1111/jace.13490 Webb, 2008, Configurational heat capacity of Na2O–CaO–Al2O3–SiO2 melts, Chem. Geol., 256, 92, 10.1016/j.chemgeo.2008.04.003 Sørensen, 2020, Heat conduction in oxide glasses: Balancing diffusons and propagons by network rigidity, Appl. Phys. Lett., 117, 10.1063/5.0013400 Sukenaga, 2021, Thermal conductivity of sodium silicate glasses and melts: contribution of diffusive and propagative vibration modes, Frontiers in Materials, 8, 10.3389/fmats.2021.753746 Chen, 2019, Insight into the relationship between viscosity and structure of CaO-SiO2-MgO-Al2O3 molten slags, Metall. Mater. Trans. B, 50, 2930, 10.1007/s11663-019-01660-7 Neuville, 2006, Viscosity, structure and mixing in (Ca, Na) silicate melts, Chem. Geol., 229, 28, 10.1016/j.chemgeo.2006.01.008 Kubicki, 1992, Raman and infrared study of pressure-induced structural changes in MgSiO3, CaMgSi2O6, and CaSiO3 glasses, Am. Mineral., 77, 258 Tsunawaki, 1981, Analysis of CaO-SiO2 and CaO-SiO2-CaF2 glasses by Raman spectroscopy, Journal of Non-Crystalline Solids, 44, 369, 10.1016/0022-3093(81)90039-9 Mysen, 1993, Structure of silicate melts at high temperature: In-situ measurements in the system BaO-SiO2 to 1669 C, Am. Mineral., 78, 699 Angeli, 2010, Boron speciation in soda-lime borosilicate glasses containing zirconium, J. Am. Ceram. Soc., 93, 2693, 10.1111/j.1551-2916.2010.03771.x Neuville, 2004, Al environment in tectosilicate and peraluminous glasses: A 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Ac, 68, 5071, 10.1016/j.gca.2004.05.048 McMillan, 1982, A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate, Geochim. Cosmochim. Ac, 46, 2021, 10.1016/0016-7037(82)90182-X Mysen, 1981, The structural role of aluminum in silicate melts - a Raman spectroscopic study at 1 atmosphere, Am. Mineral., 66, 678 Allu, 2018, Structure and Crystallization of Alkaline-Earth Aluminosilicate Glasses: Prevention of the Alumina-Avoidance Principle, J. Phys. Chem. B, 122, 4737, 10.1021/acs.jpcb.8b01811 Lee, 1999, The degree of aluminum avoidance in aluminosilicate glasses, Am. Mineral., 84, 937, 10.2138/am-1999-5-630 Neuville, 2006, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229, 173, 10.1016/j.chemgeo.2006.01.019 Mysen, 1985, Relationships between properties and structure of aluminosilicate melts, Am. Mineral., 70, 88 Mysen, 1985, Viscosity and structure of iron- and aluminum-bearing calcium silicate melts at 1 atm, Am. Mineral., 70, 487 Neuville, 2008, Amorphous materials: Properties, structure, and durability: Structure of Mg- and Mg/Ca aluminosilicate glasses: 27Al NMR and Raman spectroscopy investigations, Am. Mineral., 93, 1721, 10.2138/am.2008.2867 Seifert, 1982, Three-dimensional network structure of quenched melts (glass) in the systems SiO2–NaAlO2, SiO2–CaAl2O4 and SiO2–MgAl2O4, Am. Mineral., 67, 696 Mysen, 2003, The structural behavior of Al3+ in peralkaline melts and glasses in the system Na2O-Al2O3-SiO2, Am. Mineral, 88, 1668, 10.2138/am-2003-11-1206 Frantza, 1995, Raman spectra and structure of BaO-SiO2, SrO-SiO2 and CaO-SiO2 melts to 1600°C, Chem. Geol., 121, 155, 10.1016/0009-2541(94)00127-T Wu, 2005, Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts, Acta Phys. Sin-ch. Ed., 54, 961, 10.7498/aps.54.961 Loewenstein, 1954, The distribution of aluminum in the tetrahedra of silicates and aluminates, Am. Mineral., 39, 92 Bechgaard, 2016, Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens, Journal of Non-Crystalline Solids, 441, 49, 10.1016/j.jnoncrysol.2016.03.011 Lee, 2005, Structure and the extent of disorder in quaternary (Ca-Mg and Ca-Na) aluminosilicate glasses and melts, Am. Mineral., 90, 1393, 10.2138/am.2005.1843 Bisbrouck, 2021, Impact of magnesium on the structure of aluminoborosilicate glasses: A solid-state NMR and Raman spectroscopy study, J. Am. Ceram. Soc., 10.1111/jace.17876 Merzbacher, 1990, A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses, Journal of Non-Crystalline Solids, 124, 194, 10.1016/0022-3093(90)90263-L Chen, 2021, Structural and Viscous Insight into Impact of MoO3 on Molten Slags, Metall. Mater. Trans. B, 52, 3730, 10.1007/s11663-021-02261-z Toplis, 1997, Peraluminous viscosity maxima in Na2O-Al2O3-SiO2 liquids: The role of triclusters in tectosilicate melts, Geochim. Cosmochim. Ac, 61, 2605, 10.1016/S0016-7037(97)00126-9 Xiang, 2013, Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations, The Journal of Chemical Physics, 139 Cormier, 2003, Chemical dependence of network topology of calcium aluminosilicate glasses: a computer simulation study, Journal of Non-Crystalline Solids, 332, 255, 10.1016/j.jnoncrysol.2003.09.012 Navrotsky, 1985, The tetrahedral framework in glasses and melts - inferences from molecular orbital calculations and implications for structure, thermodynamics, and physical properties, Phys. Chem. Miner., 11, 284, 10.1007/BF00307406 Liang, 2017, Transition of blast furnace slag from silicate-based to aluminate-based: structure evolution by molecular dynamics simulation and raman spectroscopy, Metall. Mater. Trans. B, 48, 573, 10.1007/s11663-016-0855-y Huang, 1991, Structure and properties of calcium aluminosilicate glasses, Journal of Non-Crystalline Solids, 128, 310, 10.1016/0022-3093(91)90468-L Stebbins, 1997, NMR evidence for excess non-bridging oxygen in an aluminosilicate glass, Nature, 390, 60, 10.1038/36312 Eiermann, 1966, Model interpretation of thermal conductivity in high polymers i. amorphous high polymers, Rubber Chem. Technol., 39, 841, 10.5254/1.3547147 Hayashi, 2001, Effect of ionicity of nonbridging oxygen ions on thermal conductivity of molten alkali silicates, Phys. Chem. Glasses., 42, 6