Topological stability of a sequence of maps on a compact metric space
Tóm tắt
Từ khóa
Tài liệu tham khảo
Araújo, V.: Attractors and time averages for random maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 17(3), 307–369 (2000)
Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems. North-Holland Publishing Co., Amsterdam (1994)
Bessa, M., Rocha, J.: A remark on the topological stability of symplectomorphisms. Appl. Math. Lett. 25, 163–165 (2012)
Bessa, M., Rocha, J.: Topological stability for conservative systems. J. Differ. Equ. 250(10), 3960–3966 (2011)
Chen, L., Li, S.: Shadowing property for inverse limit spaces. Proc. Am. Math. Soc. 115(2), 573–580 (1992)
Das, R.: Chaos of a sequence of maps in a metric G -space. Appl. Math. Sci. 136(6), 6769–6775 (2012)
Das, T., Lee, K., Richeson, D., Wiseman, J.: Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces. Topology Appl. 160(1), 149–158 (2013)
Hurley, M.: Fixed points of topologically stable flows. Trans. Am. Math. Soc. 294(2), 625–633 (1986)
Hurley, M.: Combined structural and topological stability are equivalent to Axiom A and the strong transversality condition. Ergodic Theory Dyn. Syst. 4(1), 81–88 (1984)
Lee, K., Sakai, K.: Various shadowing properties and their equivalence. Discrete Contin. Dyn. Syst. 13(2), 533–540 (2005)
Morales, C.: Measure-expansive systems. Preprint IMPA, D083 (2011)
Moriyasu, K., Sakai, K., Sumi, N.: Vector fields with topological stability. Trans. Am. Math. Soc. 353(8), 3391–3408 (2001)
Pilyugin, S.Y.: Shadowing in dynamical systems, Lecture Notes in Mathematics, vol. 1706. Springer, Berlin (1999)
Robinson, C.: Stability theorems and hyperbolicity in dynamical systems. Rocky Mt. J. Math. 7(3), 425–437 (1977)
Tian, C., Chen, G.: Chaos of a sequence of maps in a metric space. Chaos Solitons Fractals 28, 1067–1075 (2006)