Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family

Science China Materials - Tập 61 Số 1 - Trang 23-29 - 2018
Jiangxu Li1, Hui Ma1, Qing Xie1,2, Shaojie Feng1, Sami Ullah3, Ronghan Li1, Junhua Dong4, Dianzhong Li1, Yiyi Li1, Xing‐Qiu Chen1
1Shenyang National Laboratory for Materials Science, the Institute of Metal Research, Chinese Academy of Sciences, School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, China
2University of Chinese Academy of Sciences, Beijing, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Environmental Corrosion Center, the Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zahid Hasan M, Xu SY, Bian G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys Scr, 2015, T164: 014001

Young SM, Zaheer S, Teo JCY, et al. Dirac semimetal in three dimensions. Phys Rev Lett, 2012, 108: 140405

Wang Z, Sun Y, Chen XQ, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys Rev B, 2012, 85: 195320

Liu ZK, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343: 864–867

Cheng X, Li R, Sun Y, et al. Ground-state phase in the threedimensional topological Dirac semimetal Na3Bi. Phys Rev B, 2014, 89: 245201

Xu SY, Liu C, Kushwaha SK, et al. Observation of Fermi arc surface states in a topological metal. Science, 2015, 347: 294–298

Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88: 125427

Neupane M, Xu SY, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5: 3786

Liu ZK, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13: 677–681

Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B, 2011, 83: 205101

Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X, 2015, 5: 011029

Huang SM, Xu SY, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun, 2015, 6: 7373

Lv BQ, Weng HM, Fu BB, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X, 2015, 5: 031013

Xu SY, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349: 613–617

Liu ZK, Yang LX, Sun Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat Mater, 2015, 15: 27–31

Chang G, Xu SY, Sanchez DS, et al. A strongly robust type II Weyl fermion semimetal state in Ta3S2. Sci Adv, 2016, 2: e1600295

Koepernik K, Kasinathan D, Efremov DV, et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys Rev B, 2016, 93: 201101

Soluyanov AA, Gresch D, Wang Z, et al. Type-II Weyl semimetals. Nature, 2015, 527: 495–498

Li FY, Luo X, Dai X, et al. Hybrid Weyl semimetal. Phys Rev B, 2016, 94: 121105

Ruan J, Jian SK, Zhang D, et al. Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2. Phys Rev Lett, 2016, 116: 226801

Ruan J, Jian SK, Yao H, et al. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat Commun, 2016, 7: 11136

Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys Rev B, 2016, 94: 165201

Fang C, Weng H, Dai X, et al. Topological nodal line semimetals. Chin Phys B, 2016, 25: 117106

Ryu S, Hatsugai Y. Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys Rev Lett, 2002, 89: 077002

Heikkilä TT, Volovik GE. Dimensional crossover in topological matter: evolution of the multiple Dirac point in the layered system to the flat band on the surface. Jetp Lett, 2011, 93: 59–65

Burkov AA, Hook MD, Balents L. Topological nodal semimetals. Phys Rev B, 2011, 84: 235126

Li R, Ma H, Cheng X, et al. Dirac node lines in pure alkali earth metals. Phys Rev Lett, 2016, 117: 096401

Weng H, Liang Y, Xu Q, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B, 2015, 92: 045108

Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett, 2015, 115: 036807

Kim Y, Wieder BJ, Kane CL, et al. Dirac line nodes in inversionsymmetric crystals. Phys Rev Lett, 2015, 115: 036806

Xie LS, Schoop LM, Seibel EM, et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater, 2015, 3: 083602

Zeng MG, Fang C, Chang GQ, et al. Topological semimetals and topological insulators in rare earth monopnictides. arXiv: 1504.03492v1

Lu L, Fu L, Joannopoulos JD, et al. Weyl points and line nodes in gyroid photonic crystals. Nat Photon, 2013, 7: 294–299

Mullen K, Uchoa B, Glatzhofer DT. Line of Dirac nodes in hyperhoneycomb lattices. Phys Rev Lett, 2015, 115: 026403

Gan LY, Wang R, Jin YJ, et al. Emergence of topological nodal loops in alkaline-earth hexaborides XB6 (X = Ca, Sr, and Ba) under pressure. Phys Chem Chem Phys, 2017, 19: 8210–8215

Kawakami T, Hu X. Symmetry-guaranteed and accidental nodalline semimetals in FCC lattice. arXiv: 1611.07342v2

Yang B, Zhou H, Zhang X, et al. Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon, 2017, 113: 40–45

Chang G, Xu SY, Zheng H, et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn). Sci Rep, 2016, 6: 38839

Bradlyn B, Cano J, Wang Z, et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science, 2016, 353: aaf5037

Rhim JW, Kim YB. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra. Phys Rev B, 2015, 92: 045126

Huh Y, Moon EG, Kim YB. Long-range Coulomb interaction in nodal-ring semimetals. Phys Rev B, 2016, 93: 035138

Wu Y, Wang LL, Mun E, et al. Dirac node arcs in PtSn4. Nat Phys, 2016, 12: 667–671

Bian G, Chang TR, Zheng H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys Rev B, 2016, 93: 121113

Bian G, Chang TR, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun, 2016, 7: 10556

Schoop LM, Ali MN, Straßer C, et al. Dirac cone protected by nonsymmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat Commun, 2016, 7: 11696

Neupane M, Belopolski I, Hosen MM, et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys Rev B, 2016, 93: 201104

Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett, 2016, 117: 016602

Feng BJ, Fu BT, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun, 2017, 8: 1007

Chen H, Zhu W, Xiao D, et al. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys Rev Lett, 2011, 107: 056804

Rajamathi CR, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts. Adv Mater, 2017, 29: 1606202

Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23

Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309

Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102

Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem, 2009, 1: 37–46

Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater, 2013, 12: 850–855

Qu Y, Pan H, Kwok CT, et al. Effect of doping on hydrogen evolution reaction of vanadium disulfide monolayer. Nanoscale Res Lett, 2015, 10: 480

Greeley J, Nørskov JK, Kibler LA, et al. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem, 2006, 7: 1032–1035

Zhang F, Shi Y, Xue T, et al. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Sci China Mater, 2017, 60: 324–334

Zhang J, Chen M, Chen J, et al. Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Sci China Mater, 2017, 60: 685–696

Liu S, Zhang X, Zhang J, et al. MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER. Sci China Mater, 2016, 59: 1051–1061

Greeley J, Jaramillo TF, Bonde J, et al. Computational highthroughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2006, 5: 909–913

Li H, Tsai C, Koh AL, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 48–53

Voiry D, Fullon R, Yang J, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater, 2016, 15: 1003–1009

Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta, 2002, 47: 3571–3594

Supplemental Materials (1) computational details ([52,61,71–80]), (2) comparison of DFT optimized lattice constants with available experimental data, (3) band inversion in TiSi, (4) DNLs in TiSifamily, (5) Dirac nodal lines and Surface band structures in ZrSi and TiGe, (6) evolution of thickness-dependent surface electronic band structures of the TiSi (010) surface, and (7) computations of hydrogen adsorption on the TiSi surfaces

Agarwal S, Cotts EJ, Zarembo S, et al. The heat capacities of titanium silicides Ti5Si3, TiSi and TiSi2. J Alloys Compd, 2001, 314: 99–102

Samsonov GV, Podgrushko NF, Dvorina LA. Thermal-conductivity of silicide phases of transition-metals of groups IV-VI. Inorg Mater, 1977, 13: 1429–1431

Samsonov GV, Okhremchuk LN, Podgrushko NF, et al. Relations between electron work function and certain physical-properties in silicides of group-IV transition-metals. Inorg Mater, 1976, 12: 720–722

Brukl C, Nowotny H, Schob O, et al. Die Kristallstruckturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2. Monatshefte für Chem, 1961, 92: 781–788

Fu L, Kane CL, Mele EJ. Topological insulators in three dimensions. Phys Rev Lett, 2007, 98: 106803

Soluyanov AA, Vanderbilt D. Computing topological invariants without inversion symmetry. Phys Rev B, 2011, 83: 235401

Yu R, Qi XL, Bernevig A, et al. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B, 2011, 84: 075119

Sun Y, Wang QZ, Wu SC, et al. Pressure-induced topological insulator in NaBaBi with right-handed surface spin texture. Phys Rev B, 2016, 93: 205303