Topological quantum catalyst: Dirac nodal line states and a potential electrocatalyst of hydrogen evolution in the TiSi family
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zahid Hasan M, Xu SY, Bian G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys Scr, 2015, T164: 014001
Young SM, Zaheer S, Teo JCY, et al. Dirac semimetal in three dimensions. Phys Rev Lett, 2012, 108: 140405
Wang Z, Sun Y, Chen XQ, et al. Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb). Phys Rev B, 2012, 85: 195320
Liu ZK, Zhou B, Zhang Y, et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 2014, 343: 864–867
Cheng X, Li R, Sun Y, et al. Ground-state phase in the threedimensional topological Dirac semimetal Na3Bi. Phys Rev B, 2014, 89: 245201
Xu SY, Liu C, Kushwaha SK, et al. Observation of Fermi arc surface states in a topological metal. Science, 2015, 347: 294–298
Wang Z, Weng H, Wu Q, et al. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys Rev B, 2013, 88: 125427
Neupane M, Xu SY, Sankar R, et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat Commun, 2014, 5: 3786
Liu ZK, Jiang J, Zhou B, et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat Mater, 2014, 13: 677–681
Wan X, Turner AM, Vishwanath A, et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B, 2011, 83: 205101
Weng H, Fang C, Fang Z, et al. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys Rev X, 2015, 5: 011029
Huang SM, Xu SY, Belopolski I, et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat Commun, 2015, 6: 7373
Lv BQ, Weng HM, Fu BB, et al. Experimental discovery of Weyl semimetal TaAs. Phys Rev X, 2015, 5: 031013
Xu SY, Belopolski I, Alidoust N, et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science, 2015, 349: 613–617
Liu ZK, Yang LX, Sun Y, et al. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat Mater, 2015, 15: 27–31
Chang G, Xu SY, Sanchez DS, et al. A strongly robust type II Weyl fermion semimetal state in Ta3S2. Sci Adv, 2016, 2: e1600295
Koepernik K, Kasinathan D, Efremov DV, et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys Rev B, 2016, 93: 201101
Ruan J, Jian SK, Zhang D, et al. Ideal Weyl semimetals in the chalcopyrites CuTlSe2, AgTlTe2, AuTlTe2, and ZnPbAs2. Phys Rev Lett, 2016, 116: 226801
Ruan J, Jian SK, Yao H, et al. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat Commun, 2016, 7: 11136
Weng H, Fang C, Fang Z, et al. Coexistence of Weyl fermion and massless triply degenerate nodal points. Phys Rev B, 2016, 94: 165201
Ryu S, Hatsugai Y. Topological origin of zero-energy edge states in particle-hole symmetric systems. Phys Rev Lett, 2002, 89: 077002
Heikkilä TT, Volovik GE. Dimensional crossover in topological matter: evolution of the multiple Dirac point in the layered system to the flat band on the surface. Jetp Lett, 2011, 93: 59–65
Li R, Ma H, Cheng X, et al. Dirac node lines in pure alkali earth metals. Phys Rev Lett, 2016, 117: 096401
Weng H, Liang Y, Xu Q, et al. Topological node-line semimetal in three-dimensional graphene networks. Phys Rev B, 2015, 92: 045108
Yu R, Weng H, Fang Z, et al. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. Phys Rev Lett, 2015, 115: 036807
Kim Y, Wieder BJ, Kane CL, et al. Dirac line nodes in inversionsymmetric crystals. Phys Rev Lett, 2015, 115: 036806
Xie LS, Schoop LM, Seibel EM, et al. A new form of Ca3P2 with a ring of Dirac nodes. APL Mater, 2015, 3: 083602
Zeng MG, Fang C, Chang GQ, et al. Topological semimetals and topological insulators in rare earth monopnictides. arXiv: 1504.03492v1
Lu L, Fu L, Joannopoulos JD, et al. Weyl points and line nodes in gyroid photonic crystals. Nat Photon, 2013, 7: 294–299
Mullen K, Uchoa B, Glatzhofer DT. Line of Dirac nodes in hyperhoneycomb lattices. Phys Rev Lett, 2015, 115: 026403
Gan LY, Wang R, Jin YJ, et al. Emergence of topological nodal loops in alkaline-earth hexaborides XB6 (X = Ca, Sr, and Ba) under pressure. Phys Chem Chem Phys, 2017, 19: 8210–8215
Kawakami T, Hu X. Symmetry-guaranteed and accidental nodalline semimetals in FCC lattice. arXiv: 1611.07342v2
Yang B, Zhou H, Zhang X, et al. Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon, 2017, 113: 40–45
Chang G, Xu SY, Zheng H, et al. Room-temperature magnetic topological Weyl fermion and nodal line semimetal states in halfmetallic Heusler Co2TiX (X=Si, Ge, or Sn). Sci Rep, 2016, 6: 38839
Bradlyn B, Cano J, Wang Z, et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science, 2016, 353: aaf5037
Rhim JW, Kim YB. Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra. Phys Rev B, 2015, 92: 045126
Huh Y, Moon EG, Kim YB. Long-range Coulomb interaction in nodal-ring semimetals. Phys Rev B, 2016, 93: 035138
Bian G, Chang TR, Zheng H, et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys Rev B, 2016, 93: 121113
Bian G, Chang TR, Sankar R, et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat Commun, 2016, 7: 10556
Schoop LM, Ali MN, Straßer C, et al. Dirac cone protected by nonsymmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat Commun, 2016, 7: 11696
Neupane M, Belopolski I, Hosen MM, et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys Rev B, 2016, 93: 201104
Hu J, Tang Z, Liu J, et al. Evidence of topological nodal-line fermions in ZrSiSe and ZrSiTe. Phys Rev Lett, 2016, 117: 016602
Feng BJ, Fu BT, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun, 2017, 8: 1007
Chen H, Zhu W, Xiao D, et al. CO oxidation facilitated by robust surface states on Au-covered topological insulators. Phys Rev Lett, 2011, 107: 056804
Rajamathi CR, Gupta U, Kumar N, et al. Weyl semimetals as hydrogen evolution catalysts. Adv Mater, 2017, 29: 1606202
Nørskov JK, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23
Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309
Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 2007, 317: 100–102
Nørskov JK, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid catalysts. Nat Chem, 2009, 1: 37–46
Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater, 2013, 12: 850–855
Qu Y, Pan H, Kwok CT, et al. Effect of doping on hydrogen evolution reaction of vanadium disulfide monolayer. Nanoscale Res Lett, 2015, 10: 480
Greeley J, Nørskov JK, Kibler LA, et al. Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem, 2006, 7: 1032–1035
Zhang F, Shi Y, Xue T, et al. In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Sci China Mater, 2017, 60: 324–334
Zhang J, Chen M, Chen J, et al. Synthesis of single-crystal hyperbranched rhodium nanoplates with remarkable catalytic properties. Sci China Mater, 2017, 60: 685–696
Liu S, Zhang X, Zhang J, et al. MoS2 with tunable surface structure directed by thiophene adsorption toward HDS and HER. Sci China Mater, 2016, 59: 1051–1061
Greeley J, Jaramillo TF, Bonde J, et al. Computational highthroughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater, 2006, 5: 909–913
Li H, Tsai C, Koh AL, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 48–53
Voiry D, Fullon R, Yang J, et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater, 2016, 15: 1003–1009
Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta, 2002, 47: 3571–3594
Supplemental Materials (1) computational details ([52,61,71–80]), (2) comparison of DFT optimized lattice constants with available experimental data, (3) band inversion in TiSi, (4) DNLs in TiSifamily, (5) Dirac nodal lines and Surface band structures in ZrSi and TiGe, (6) evolution of thickness-dependent surface electronic band structures of the TiSi (010) surface, and (7) computations of hydrogen adsorption on the TiSi surfaces
Agarwal S, Cotts EJ, Zarembo S, et al. The heat capacities of titanium silicides Ti5Si3, TiSi and TiSi2. J Alloys Compd, 2001, 314: 99–102
Samsonov GV, Podgrushko NF, Dvorina LA. Thermal-conductivity of silicide phases of transition-metals of groups IV-VI. Inorg Mater, 1977, 13: 1429–1431
Samsonov GV, Okhremchuk LN, Podgrushko NF, et al. Relations between electron work function and certain physical-properties in silicides of group-IV transition-metals. Inorg Mater, 1976, 12: 720–722
Brukl C, Nowotny H, Schob O, et al. Die Kristallstruckturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2. Monatshefte für Chem, 1961, 92: 781–788
Soluyanov AA, Vanderbilt D. Computing topological invariants without inversion symmetry. Phys Rev B, 2011, 83: 235401
Yu R, Qi XL, Bernevig A, et al. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys Rev B, 2011, 84: 075119