Topological entropy of continuous self-maps on a graph
Tóm tắt
Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.
Tài liệu tham khảo
Adler RL, Konheim AG, McAndrew MH (1965) Topological entropy. Trans Am Math Soc 114:309–319
Alseda L, Llibre J, Misiurewicz M (2000) Combinatorial dynamics and entropy in dimension one, Second edition, Advanced Series in Nonlinear Dynamics, vol 5. World Scientific Publishing Co., Inc, River Edge, NJ
Balibrea F (2016) On problems of Topological Dynamics in non-autonomous discrete systems. Appl Math Nonlinear Sci 1(2):391–404
Bowen R (1971) Entropy for group endomorphisms and homogeneous spaces. Trans Am Math Soc 153:401–414 (erratum: Trans. Amer. Math. Soc. 181(1973):509–510)
Brown RF (1971) The Lefschetz fixed point theorem. Scott, Foresman and Company, Glenview
Casasayas J, Llibre J, Nunes A (1992) Algebraic properties of the Lefschetz zeta function, periodic points and topological entropy. Publ Math 36:467–472
Franks J (1982) Homology and dynamical systems. CBSM Regional Conf. Ser. in Math. 49, Amer. Math. Soc., Providence, R.I
Fried D (1983) Periodic points and twisted coefficients, Lecture Notes in Maths., no 1007. Springer, Berlin, pp 175–179
Guaschi J, Llibre J (1995) Periodic points of \({\cal{C}}^1\) maps and the asymptotic Lefschetz number. Int J Bifurcation Chaos 5:1369–1373
Guirao JLG, Llibre J (2019) On the periods of a continuous self-map on a graph. Comput Appl Math 38:78(2):1–8
Guirao JLG, Llibre J (2017) Topological entropy and peridods of self-maps on compact manifolds. Houston J Math 43:1337–1347
Handel M, Thurston WP (1985) New proofs of some results of Nielsen. Adv Math 56:173–191
Hasselblatt B, Katok A (2002) Handbook of dynamical systems, vol 1A. North-Holland, Amsterdam
Jiang B (1993) Nilsen theory for periodic orbits and applications to dynamical systems. Comtemp Math 152:183–202
Jiang B (1996) Estimation of the number of periodic orbits. Pac J Math 172:151–185
Lang S (1971) Algebra. Addison-Wesley, Boston
Liao G, Fan Q (1998) Minimal subshifts which display Schweizer–Smítal chaos and have zero topological entropy. Sci China Ser A Math 41(1):33–38
Llibre J, Misiurewicz M (1993) Horseshoes, entropy and periods for graph maps. Topology 32:649–664
Mendes de Jesus C (2017) Graphs of stable maps between closed orientable surfaces. Comput Appl Math 36:1185–1194
Misiurewicz M, Przytycki F (1977) Topological entropy and degree of smooth mappings, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Math. Astr Phys XXV:573–574
Spanier EH (1981) Algebraic topology. Springer, New York
Walters P (1992) An introduction to Ergodic theory. Springer, Berlin
Washington LC (1982) Introduction to cyclotomic fields. Springer, Berlin