Topological entropy of continuous self-maps on a graph

Springer Science and Business Media LLC - Tập 38 - Trang 1-10 - 2019
Juan Luis García Guirao1, Jaume Llibre2, Wei Gao1,3
1Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, Cartagena, Spain
2Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
3School of Information Science and Technology, Yunnan Normal University, Kunming, China

Tóm tắt

Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.

Tài liệu tham khảo

Adler RL, Konheim AG, McAndrew MH (1965) Topological entropy. Trans Am Math Soc 114:309–319 Alseda L, Llibre J, Misiurewicz M (2000) Combinatorial dynamics and entropy in dimension one, Second edition, Advanced Series in Nonlinear Dynamics, vol 5. World Scientific Publishing Co., Inc, River Edge, NJ Balibrea F (2016) On problems of Topological Dynamics in non-autonomous discrete systems. Appl Math Nonlinear Sci 1(2):391–404 Bowen R (1971) Entropy for group endomorphisms and homogeneous spaces. Trans Am Math Soc 153:401–414 (erratum: Trans. Amer. Math. Soc. 181(1973):509–510) Brown RF (1971) The Lefschetz fixed point theorem. Scott, Foresman and Company, Glenview Casasayas J, Llibre J, Nunes A (1992) Algebraic properties of the Lefschetz zeta function, periodic points and topological entropy. Publ Math 36:467–472 Franks J (1982) Homology and dynamical systems. CBSM Regional Conf. Ser. in Math. 49, Amer. Math. Soc., Providence, R.I Fried D (1983) Periodic points and twisted coefficients, Lecture Notes in Maths., no 1007. Springer, Berlin, pp 175–179 Guaschi J, Llibre J (1995) Periodic points of \({\cal{C}}^1\) maps and the asymptotic Lefschetz number. Int J Bifurcation Chaos 5:1369–1373 Guirao JLG, Llibre J (2019) On the periods of a continuous self-map on a graph. Comput Appl Math 38:78(2):1–8 Guirao JLG, Llibre J (2017) Topological entropy and peridods of self-maps on compact manifolds. Houston J Math 43:1337–1347 Handel M, Thurston WP (1985) New proofs of some results of Nielsen. Adv Math 56:173–191 Hasselblatt B, Katok A (2002) Handbook of dynamical systems, vol 1A. North-Holland, Amsterdam Jiang B (1993) Nilsen theory for periodic orbits and applications to dynamical systems. Comtemp Math 152:183–202 Jiang B (1996) Estimation of the number of periodic orbits. Pac J Math 172:151–185 Lang S (1971) Algebra. Addison-Wesley, Boston Liao G, Fan Q (1998) Minimal subshifts which display Schweizer–Smítal chaos and have zero topological entropy. Sci China Ser A Math 41(1):33–38 Llibre J, Misiurewicz M (1993) Horseshoes, entropy and periods for graph maps. Topology 32:649–664 Mendes de Jesus C (2017) Graphs of stable maps between closed orientable surfaces. Comput Appl Math 36:1185–1194 Misiurewicz M, Przytycki F (1977) Topological entropy and degree of smooth mappings, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Math. Astr Phys XXV:573–574 Spanier EH (1981) Algebraic topology. Springer, New York Walters P (1992) An introduction to Ergodic theory. Springer, Berlin Washington LC (1982) Introduction to cyclotomic fields. Springer, Berlin