Topological Insulators from the Perspective of Non-commutative Geometry and Index Theory

Jahresbericht der Deutschen Mathematiker-Vereinigung - Tập 118 - Trang 247-273 - 2016
Hermann Schulz-Baldes1
1Department Mathematik, FAU Erlangen-Nürnberg, Erlangen, Germany

Tóm tắt

Topological insulators are solid state systems of independent electrons for which the Fermi level lies in a mobility gap, but the Fermi projection is nevertheless topologically non-trivial, namely it cannot be deformed into that of a normal insulator. This non-trivial topology is encoded in adequately defined invariants and implies the existence of surface states that are not susceptible to Anderson localization. This non-technical review reports on recent progress in the understanding of the underlying mathematical structures, with a particular focus on index theory.

Tài liệu tham khảo

Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Comment. Phys.-Math. 157, 245–278 (1993) Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142–1161 (1997) Andersson, A.: Index pairings for \({\mathbb{R}}^{n}\)-actions and Rieffel deformations. Preprint arXiv:1406.4078 (2014) Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Publ. Math. 37, 5–26 (1969) Avila, J.C., Schulz-Baldes, H., Villegas-Blas, C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16, 136–170 (2013) Avron, J., Seiler, R., Simon, B.: The charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994) Bellissard, J.: K-theory of C∗-algebras in solid state physics. In: Dorlas, T., Hugenholtz, M., Winnink, M. (eds.) Lecture Notes in Physics, vol. 257, pp. 99–156. Springer, Berlin (1986) Bellissard, J.: Ordinary quantum Hall effect and non-commutative cohomology. In: Ziesche, W., Weller, P. (eds.) Proc. of the Bad Schandau Conference on Localization, 1986. Teubner Texte Phys., vol. 16. Teubner, Leipzig (1988) Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994) Blackadar, B.: K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press Cambridge (1998) Boersema, J.L., Loring, T.A.: \(K\)-theory for real C∗-algebras via unitary elements with symmetries. arXiv:1504.03284 Bourne, C., Carey, A.L., Rennie, A.: The bulk-edge correspondence for the quantum Hall effect in Kasparov theory. Lett. Math. Phys. 105, 1253–1273 (2015) Bourne, C., Carey, A.L., Rennie, A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016) Bourne, C., Kellendonk, J., Rennie, A.: The \(K \)-theoretic bulk-edge correspondence for topological insulators. Preprint arXiv:1604.02337 Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index Theory for Locally Compact Noncommutative Geometries. Mem. AMS. (2014) Carey, A.L., Phillips, J., Schulz-Baldes, H.: Spectral flow for skew-adjoint Fredholm operators. Preprint arXiv:1604.06994 Connes, A.: Non-commutative differential geometry. Publ. Math. 62, 41–144 (1985) Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994) De Nittis, G., Gomi, K.: Classification of “real” Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303–338 (2014) De Nittis, G., Gomi, K.: Classification of “Quaternionic” Bloch-bundles. Commun. Math. Phys. 339, 1–55 (2015) De Nittis, G., Lein, M.: Topological polarization in graphene-like systems. J. Phys. A, Math. Theor. 46, 385001 (2013) De Nittis, G., Schulz-Baldes, H.: Spectral flows associated to flux tubes. Ann. Henri Poincaré 17, 1–35 (2016) De Nittis, G., Drabkin, M., Schulz-Baldes, H.: Localization and Chern numbers for weakly disordered BdG operators. Markov Process. Relat. Fields 21, 463–482 (2015) Elliott, G.A.: On the K-theory of the C∗-algebra generated by a projective representation of a torsion-free discrete Abelian group. In: Operator Algebras and Group Representations, vol. I, Neptun, 1980. Monographs Stud. Math, vol. 17, pp. 157–184. Pitman, Boston (1984) Essin, A.M., Gurarie, V.: Bulk-boundary correspondence of topological insulators from their Green’s functions. Phys. Rev. B 84, 125132 (2011) Fiorenza, D., Monaco, D., Panati, G.: \(Z_{2}\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016) Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927–2023 (2013) Fröhlich, J., Spencer, T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151–184 (1983) Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Boston (2001) Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013) Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343, 477–513 (2016) Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993) Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005) Kane, C.L., Mele, E.J.: Z(2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005) Karoubi, M.: \(K\)-Theory: An Introduction. Springer, Berlin (1978) Katsura, H., Koma, T.: The \(Z_{2}\) index of disordered topological insulators with time reversal symmetry. J. Math. Phys. 57, 021903 (2016) Kellendonk, J.: On the C∗-algebraic approach to topological phases for insulators. Preprint arXiv:1509.06271 Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002) Kennedy, R., Zirnbauer, M.: Bott periodicity for \({\mathbb {Z}}_{2}\) symmetric ground states of gapped free-fermion systems. Commun. Math. Phys. 342, 909–963 (2016) Kitaev, A.: Periodic table for topological insulators and superconductors. In: Advances in Theoretical Physics: Landau Memorial Conference AIP Conference Proceedings, vol. 1134, pp. 22–30 (2009) Knez, I., Rettner, C.T., Yang, S.H., Parkin, S.S., Du, L., Du, R.R., Sullivan, G.: Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells. Phys. Rev. Lett. 112, 026602 (2014) Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Preprint arXiv:1511.05314 Lawson, H.B., Michelson, M.L.: Spin Geometry. Princeton University Press, Princeton (1989) Li, D., Kaufmann, R.M., Wehefritz-Kaufmann, B.: Topological insulators and K-theory. Preprint arXiv:1510.08001 Loring, T.A.: K-theory and pseudospectra for topological insulators. Ann. Phys. 356, 383–416 (2015) Loring, T.A., Hastings, M.B.: Topological insulators and C∗-algebras: theory and numerical practice. Ann. Phys. 326, 1699–1759 (2011) Ma, E.Y., et al.: Unexpected edge conduction in mercury telluride quantum wells under broken time-reversal symmetry. Nature Commun. 6, 7252 (2015) Macris, N.: On the equality of edge and bulk conductance in the integer quantum Hall effect: microscopic analysis. Unpublished manuscript (2003) Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence. Commun. Math. Phys. (2016) Phillips, J.: Self-adjoint Fredholm operators and spectral flow. Can. Math. Bull. 39, 460–467 (1996) Pimsner, M., Voiculescu, D.: Exact sequences for K-groups of certain cross-products of C∗ algebras. J. Oper. Theory 4, 93–118 (1980) Prodan, E.: Robustness of the spin-Chern number. Phys. Rev. B 80, 125327 (2009) Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Springer, Berlin (2016) Prodan, E., Leung, B., Bellissard, J.: The non-commutative \(n\)-th Chern number \((n\geq 0)\). J. Phys. A, Math. Theor. 46, 485202 (2013) Qi, X.L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1111 (2011) Qi, X.L., Hughes, T.L., Zhang, S.-C.: Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008) Rammal, R., Bellissard, J.: An algebraic semi-classical approach to Bloch electrons in a magnetic field. J. Phys. (Paris) 51, 1803–1830 (1990) Rordam, M., Larsen, F., Laustsen, N.: An Introduction to K-Theory for C∗-Algebras. Cambridge University Press, Cambridge (2000) Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010) Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008) Schulz-Baldes, H.: Persistence of spin edge currents in disordered quantum spin Hall systems. Commun. Math. Phys. 324, 589–600 (2013) Schulz-Baldes, H.: \(\mathbb{Z} _{2}\)-Indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481–1500 (2015) Schulz-Baldes, H., Teufel, S.: Orbital polarization and magnetization for independent particles in disordered media. Commun. Math. Phys. 319, 649–681 (2013) Stone, C.-K., Chiu, M., Roy, A.: Symmetries, dimensions and topological insulators: the mechanism behind the face of the Bott clock. J. Phys. A, Math. Theor. 44, 045001 (2011) Streda, P.: Theory of quantized Hall conductivity in two dimensions. J. Phys. C 15, L717–721 (1982) Su, W.P., Schrieffer, J.R., Heeger, A.J.: Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980) Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17, 757–794 (2016) Wegge-Olsen, N.E.: K-Theory and C∗-Algebras. Oxford University Press, Oxford (1993)