Độ Trung Thực Tọa Độ và Ngưỡng Ảnh: Phương Pháp Homology Liên Tục

Journal of Mathematical Imaging and Vision - Tập 60 - Trang 1167-1179 - 2018
Yu-Min Chung1, Sarah Day2
1Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, USA
2Department of Mathematics, College of William and Mary, Williamsburg, USA

Tóm tắt

Chúng tôi phát triển một phương pháp dựa trên homology liên tục để phân tích cấu trúc hình học trong các hình ảnh kỹ thuật số bị nhiễu. Phương pháp này cung cấp ngưỡng để phân đoạn hình ảnh, biểu thị cấu trúc hình học vốn có cũng như ước lượng các đại lượng hình học dưới dạng số Betti. Hai bộ dữ liệu chính là quét hợp kim nhị phân và firn, giai đoạn trung gian giữa tuyết và băng.

Từ khóa

#homology liên tục #phân đoạn hình ảnh #cấu trúc hình học #số Betti #ảnh kỹ thuật số

Tài liệu tham khảo

Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans. Vis. Comput. Graph. 16(6), 1251–1260 (2010) Beucher, S.: Segmentation tools in mathematical morphology. In: Handbook of Pattern Recognition and Computer Vision, pp. 443–456. World Scientific (1993) Beucher, S.: The watershed transformation applied to image segmentation. In: Proc. 10th Pfefferkorn Conf. on Signal and Image Processing in Microscopy and Microanalysis, pp. 299–314. Cambridge, UK, 16–19 September 1991 Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical–topological properties of real functions. ACM Comput. Surv. (CSUR) 40(4), 12 (2008) Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009) Chung, M.K., Hanson, J.L., Ye, J., Davidson, R.J., Pollak, S.D.: Persistent homology in sparse regression and its application to brain morphometry. IEEE Trans. Med. Imaging 34(9), 1928–1939 (2015) Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007) Courville, Z., Hörhold, M., Hopkins, M., Albert, M.: Lattice-Boltzmann modeling of the air permeability of polar firn. J. Geophys. Res. Earth Surf. 115(F4), F04032 (2010). https://doi.org/10.1029/2009JF001549 d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imaging Syst. Technol. 16(5), 154–161 (2006) Di Stefano, L., Bulgarelli, A.: A simple and efficient connected components labeling algorithm. In: International Conference on Image Analysis and Processing, 1999. Proceedings, pp. 322–327. IEEE (1999) Dotko, P., Wanner, T.: Topological microstructure analysis using persistence landscapes. Phys. D: Nonlinear Phenom. 334, 60–81 (2016). (Topology in Dynamics, Differential Equations, and Data) Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Soc., Providence (2010) Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002) Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persistence diagrams. Ann. Stat. 42(6), 2301–2339 (2014). https://doi.org/10.1214/14-AOS1252 Frosini, P.: Towards an observer-oriented theory of shape comparison. In: Ferreira, A., Giachetti, A., Giorgi, D. (eds.) Eurographics Workshop on 3D Object Retrieval, pp. 5–8. The Eurographics Association, Delft (2016). https://doi.org/10.2312/3dor.20161080 Frosini, P., Landi, C.: Persistent betti numbers for a noise tolerant shape-based approach to image retrieval. Pattern Recognit. Lett. 34(8), 863–872 (2013). (Computer Analysis of Images and Patterns) Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: A topological measurement of protein compressibility. Jpn. J. Ind. Appl. Math. 32(1), 1–17 (2014). https://doi.org/10.1007/s13160-014-0153-5 Gameiro, M., Mischaikow, K., Wanner, T.: Evolution of pattern complexity in the Cahn–Hilliard theory of phase separation. Acta Mater. 53(3), 693–704 (2005) Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008) Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2006) Gorsse, S., Ouvrard, B., Gouné, M., Poulon-Quintin, A.: Microstructural design of new high conductivity-high strength Cu-based alloy. J. Alloys Compd. 633, 42–47 (2015) He, L.F., Chao, Y.Y., Suzuki, K.: An algorithm for connected-component labeling, hole labeling and Euler number computing. J. Comput. Sci. Technol. 28(3), 468–478 (2013) Kaczynski, T., Mischaikow, K.M., Mrozek, M.: Computational Homology, vol. 157. Springer, New York (2004) Kaempfer, T.U., Hopkins, M.A., Perovich, D.K.: A three-dimensional microstructure-based photon-tracking model of radiative transfer in snow. J. Geophys. Res. Atmos. 112(D24), D24113 (2007). https://doi.org/10.1029/2006JD008239 Keegan, K., Albert, M.R., Baker, I.: The impact of ice layers on gas transport through firn at the north greenland eemian ice drilling (neem) site, greenland. The Cryosphere 8(5), 1801–1806 (2014). https://doi.org/10.5194/tc-8-1801-2014 Kramar, M., Goullet, A., Kondic, L., Mischaikow, K.: Persistence of force networks in compressed granular media. Phys. Rev. E 87, 042,207 (2013). https://doi.org/10.1103/PhysRevE.87.042207 Kramr, M., Levanger, R., Tithof, J., Suri, B., Xu, M., Paul, M., Schatz, M.F., Mischaikow, K.: Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Phys. D: Nonlinear Phenom. 334, 82–98 (2016) Kurlin, V.: A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recognit. Lett. 83(Part 1), 3–12 (2016). (Geometric, topological and harmonic trends to image processing) MATLAB: R2016b. The MathWorks Inc., Natick (2016) Matzl, M., Schneebeli, M.: Measuring specific surface area of snow by near-infrared photography. J. Glaciol. 52(179), 558–564 (2006) Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50(2), 330–353 (2013). https://doi.org/10.1007/s00454-013-9529-6 Nanda, V.: Perseus, the persistent homology software. http://www.sas.upenn.edu/~vnanda/perseus (2013) Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975) Robins, V., Saadatfar, M., Delgado-Friedrichs, O., Sheppard, A.P.: Percolating length scales from topological persistence analysis of micro-ct images of porous materials. Water Resour. Res. 52(1), 315–329 (2016). https://doi.org/10.1002/2015WR017937 Sahoo, P.K., Soltani, S., Wong, A.K.: A survey of thresholding techniques. Comput. Vis. Graph. Image Process. 41(2), 233–260 (1988) Schneebeli, M., Sokratov, S.A.: Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity. Hydrol. Process. 18(18), 3655–3665 (2004) Sezgin, M., et al.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electr. Imaging 13(1), 146–168 (2004) Snidaro, L., Foresti, G.: Real-time thresholding with Euler numbers. Pattern Recognit. Lett. 24(910), 1533–1544 (2003). https://doi.org/10.1016/S0167-8655(02)00392-6 Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Secaucus (2003) Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-component labeling based on sequential local operations. Comput. Vis. Image Underst. 89(1), 1–23 (2003) Vaitkus, M.: Grayscale and color image segmentation using computational topology. In: Proceedings of CESCG (2013) Xia, K., Wei, G.W.: Persistent topology for cryo-EM data analysis. Int. J. Numer. Methods Biomed. Eng. (2015). https://doi.org/10.1002/cnm.2719