Topography of ganglion cells in human retina

Journal of Comparative Neurology - Tập 300 Số 1 - Trang 5-25 - 1990
Christine A. Curcio1,2, Kimberly A. Allen1
1Departments of Biological Structure University of Washington, Seattle, Washington 98195
2Ophthalmology University of Washington, Seattle, Washington 98195

Tóm tắt

Abstract

We quantified the spatial distribution of presumed ganglion cells and displaced amacrine cells in unstained whole mounts of six young normal human retinas whose photoreceptor distributions had previously been characterized. Cells with large somata compared to their nuclei were considered ganglion cells; cells with small somata relative to their nuclei were considered displaced amacrine cells. Within the central area, ganglion cell densities reach 32,000‐‐38,000 cells/mm2 in a horizontally oriented elliptical ring 0.4‐‐2.0 mm from the foveal center. In peripheral retina, densities in nasal retina exceed those at corresponding eccentricities in temporal retina by more than 300%; superior exceeds inferior by 60%. Displaced amacrine cells represented 3% of the total cells in central retina and nearly 80% in the far periphery. A twofold range in the total number of ganglion cells (0.7 to 1.5 million) was largely explained by a similar range in ganglion cell density in different eyes. Cone and ganglion cell number were not correlated, and the overall cone: ganglion cell ratio ranged from 2.9 to 7.5 in different eyes. Peripheral cones and ganglion cells have different topographies, thus suggesting meridianal differences in convergence onto individual ganglion cells.

Low convergence of foveal cones onto individual ganglion cells is an important mechanism for preserving high resolution at later stages of neural processing. Our improved estimates for the density of central ganglion cells allowed us to ask whether there are enough ganglion cells for each cone at the foveal center to have a direct line to the brain. Our calculations indicate that (1) there are so many ganglion cells relative to cones that a ratio of only one ganglion cell per foveal cone would require fibers of Henle radiating toward rather than away from the foveal center; and (2) like the macaque, the human retina may have enough ganglion cells to transmit the information afforded by closely spaced foveal cones to both ON‐ and OFF‐channels. Comparison of ganglion cell topography with the visual field representation in V1 reveals similarities consistent with the idea that cortical magnification is proportional to ganglion cell density throughout the visual field.

Từ khóa


Tài liệu tham khảo

10.1007/BF00500621

10.1002/cne.902580411

10.1007/BF01942512

Allen K. A., 1989, Topography of cone‐ganglion cell relations in human retina, Invest Ophthalmol. Vis. Sci. (Suppl), 30

Arey L. B., 1935, The number of nerve fibers in the human optic nerve, Anat. Rec., 61, 3

10.1016/0002-9394(84)90509-9

10.1098/rstb.1969.0004

Brecha N., 1982, Localization of substance P‐like immunoreactivity within the monkey retina, Invest. Ophthalmol. Vis. Sci., 23, 147

10.1073/pnas.85.16.6187

Chun M. H., 1989, Colocalization of (3H)‐muscimol uptake and choline acetyltransferase immunoreactivity in amacrine cells of the cat retina, Neurosci. Lett., 94, 259, 10.1016/0304-3940(88)90027-4

10.1002/cne.902260408

10.1007/BF00237163

10.1002/ar.1092140313

Curcio C. A., 1987, Topography of human retinal ganglion cells in unstained DMSO‐cleared whole mounts, Invest, Ophthalmol. Vis. Sci., 28, 261

10.1016/0042-6989(87)90137-4

10.1126/science.3576186

10.1016/0042-6989(89)90039-4

10.1002/cne.902920402

10.1113/jphysiol.1961.sp006803

10.1016/0042-6989(80)90018-8

Dobelle W. H., 1974, Mapping the representation of the visual field by electrical stimulation of human visual cortex, Am. J. Ophthalmol., 88, 727, 10.1016/0002-9394(79)90673-1

10.1001/archopht.1980.01020040905024

10.1136/bjo.58.8.709

10.1038/266554a0

Drasdo N., 1989, Receptive field densities of the ganglion cells of the human retina, Vision Res., 25, 985, 10.1016/0042-6989(89)90113-2

10.1001/archopht.1973.01000040003001

10.1126/science.959847

Fischer Q. andM.Kirby(1990) The number and distribution of retinal ganglion cells in the Anubis baboon. (Papio anubis).Brain Behav. Evol.(in press).

10.1523/JNEUROSCI.07-03-00913.1987

Fukuda Y., 1989, Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata), J. Neurosci., 9, 2353, 10.1523/JNEUROSCI.09-07-02353.1989

10.1111/j.1365-2818.1986.tb02764.x

10.1007/BF00305404

10.1016/0006-8993(85)90464-0

Ibel D. H., 1977, Projection into the visual field of ocular dominance columns in macaque monkey, Brain Res., 122, 336, 10.1016/0006-8993(77)90299-2

Hghes A., 1975, A quantitative analysis of the cat retinal ganglion cell topography, J. Comp. Neurol., 163, 107, 10.1002/cne.901630107

Hghes A., 1977, Handbook of Sensory Physiology, 613

10.1002/cne.901970209

10.1002/cne.901890110

10.1016/S0014-4835(87)80171-9

10.1007/BF02431765

Karschin A., 1986, Shape and distribution of astrocytes in the cat retina, Invest. Ophthalmol. Vis. Sci., 27, 828

Kolb H., 1969, A second type of midget bipolar cell in the primate retina, Appendix. Philos. Trans. R. Soc. Lond. [Biol.], 255, 177

10.1017/S0952523800004284

Kosaka T., 1988, Cholinergic neurons containing GABA‐like and/or GAD‐like immunoreactivities in various brain regions of the rat, Exp. Brain Res., 77, 605

10.1523/JNEUROSCI.05-02-00486.1985

10.1126/science.3353708

10.1002/cne.902210308

10.1002/cne.901610407

10.1007/BF01611863

10.1002/cne.902670209

Marshak D. W., 1989, Peptidergic neurons of the macaque monkey retina, Neurosci. Res. (Suppl.), 10, 5117

Missotten L., 1974, Estimation of the ratio of cones to neurons in the fovea of the human retina, Invest. Ophthalmol., 13, 1045

10.1016/0166-2236(89)90004-0

10.1002/cne.902820409

10.1152/jn.1978.41.2.472

10.1016/0006-8993(85)91449-0

10.1007/BF00577151

Østerberg G. A., 1935, Topography of the layer of rods and cones in the human retina, Acta Ophthalmol., 6, 1

Packer O., 1989, Photoreceptor topography of the adult pigtail macaque (Macaca nemestina) retina, J. Comp. Neurol., 298, 472

10.1016/0306-4522(81)90174-3

Perry V. H., 1982, The ganglion cell layer of the mammalian retina, 53

10.1016/0042-6989(85)90004-5

10.1016/0306-4522(88)90021-8

10.1016/0306-4522(84)90006-X

Polyak S. L., 1941, The Retina

Potts A. M., 1972, Morphology of the primate optic nerve. I. Method and total fiber count, Invest. Ophthalmol., 11, 980

10.1002/cne.902330403

10.1016/0002-9394(89)90488-1

10.1126/science.6828871

10.1016/S0161-6420(89)32928-9

Rodieck R. W., 1988, The Primate Retina, 203

10.1002/cne.902330107

10.1007/BF00235053

10.1038/271054a0

Sager S. M., 1988, Somatostatin‐like immunoreactive material in associational ganglion cells of human retina, Neuroscience, 27, 507, 10.1016/0306-4522(88)90284-9

10.1002/cne.902690403

10.1523/JNEUROSCI.07-04-00996.1987

10.1002/cne.902400203

10.1002/cne.902820207

10.1016/0042-6989(89)90131-4

10.1002/cne.901480209

10.3171/jns.1974.40.6.0747

10.1002/cne.901800407

10.1002/cne.901960204

10.1073/pnas.85.1.257

10.1016/0042-6989(87)90134-9

10.1523/JNEUROSCI.08-05-01531.1988

Tornqvist K., 1988, Peptide immunoreactive neurons in the human retina, Invest. Ophthalmol. Vis. Sci., 29, 680

Van Buren A., 1963, The retinal ganglion cell layer

10.1016/0042-6989(84)90041-5

10.1002/cne.901890202

Vaney D. I., 1988, GABA‐like immunoreactivity in cholinergic amacrine cells of the rabbit, Brain Res., 428, 369, 10.1016/0006-8993(88)91366-2

Vilter V., 1954, Asymetrie cyto‐architectonique de la Fovea retinienne de l'homme, C. R. Soc. Biol., 148, 220

10.1002/cne.902650308

10.1038/341643a0

10.1002/cne.902890308

Webb S. V., 1976, The sizes and distribution of ganglion cells in the retina of the owl monkey, Aotus trivirgatus. Vision Res., 16, 1241

Wertheim T., 1980, Peripheral visual acuity. (I. L. Dunsky, transl.) Am, J. Optom., 57, 915, 10.1097/00006324-198012000-00005

10.1016/0002-9394(58)90042-4

10.1002/cne.902550202

Woolsey C. N., 1942, Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials, Bull. Johns Hopkins Hosp., 70, 399

10.1001/archopht.1969.00990020153002

10.1016/0042-6989(86)90143-4